
Wrocław University of Science and Technology
Faculty of Electronics, Photonics and Microsystems

Field of study: Electronic & Computer Engineering

ENGINEERING THESIS

Path optimisation of an autonomous
Formula Student car in the BeamNG

environment

Kamil Śmigielski

Supervisor

dr inż. Adam Ratajczak

WROCŁAW 2024

ABSTRACT

The goal of this documented work, has been an augmentation of the autonomous driving
system, developed as part of collaboration with Racing Team, science circle of Wrocław
University of Science & Technology. Especially in regards to operation of the pathing
algorithms and control systems optimisations. Initial target of this augmentation, have been
designed with a goal of facilitating testing for the AMU, over near and far future. This
is to be achieved through study & employment of advanced, simulated environments &
scenarios.
To reach this goal, a multitude of solutions for creation of input data for the robotic algo-
rithms have been implemented & tried. With real world testing staying expensive, even
after two models of Formula Student cars with autonomous operation capabilities have
been finished, testing of actively developed algorithms in more and more sophisticated
simulations, has become more relevant than ever.
After years of working on the Autonomous Driving project, BeamNG.tech has emerged
as a major contender in the field of real driving scenarios simulation. After months of
casual experimentation with the suit, it has been chosen as the final, complete solution
in provision of testing scenarios & variables for the robotic system. Hence, described in
this document, its implementation and first steps into exploiting functionality provided, in
perfecting pathing algorithms for a 4-wheeled performance vehicle.

Keywords: Autonomous vehicle, pathing, path planning, computer vision, computer
science, numerical analysis, control systems, object detection, simulation, synthetic data,
ground truth data
CERCS P170/P176: Computer science, numerical analysis, systems, control/ Artificial
Intelligence

CONTENTS

Preposition . 3

Authors motivation . 3
Goal & Overview . 3
Assumptions & disclaimers . 4

1. Engineering an autonomous driving system . 6

1.1. The building blocks of a robotic system . 6
1.1.1. Contemplation of the problem . 6
1.1.2. Definition of robotic trinity . 8
1.1.3. Considerations in project management 9

1.2. Processes Relevant to Formula Student competition 10
1.2.1. What is the Formula Student Car? . 10
1.2.2. Important Rules & Restrictions in Roboticizing the Formula Student Car 10

1.3. Compilation of acquired knowledge into a functional autonomous driving system 12
1.3.1. Structure of an autonomously operating car 12
1.3.2. Overview of software design for autonomous driving 14
1.3.3. History of relevant solutions in the autonomous system 14

2. Simulation: a representation of reality . 16

2.1. Benefits in starting with state-of-the-art physics & vehicle simulation 16
2.2. Creation of plug-and-play interfaces between simulation & physical systems is

important . 17
2.3. Universal interfaces & modular design improve testing workflow significantly . . 18

3. Engineering software interfaces, universally compliant with BeamNG simulation &
real components . 19

3.1. Designing the robotics system around concept of modularity 19
3.2. Creation of testing scenarios in BeamNG.tech 20

3.2.1. The platform . 20
3.2.2. The environments . 22
3.2.3. The Vehicle . 23

3.3. Creation of ‘virtual’ interfaces in BeamNG.tech. Polling sensors & requesting
controls. 26
3.3.1. Architecture . 27
3.3.2. Programming . 28
3.3.3. Testing . 32

1

4. Extending path following algorithm with speed control 33

4.1. Distilling track driving rules of Formula Student competition 33
4.2. Understanding the path planning algorithm . 33
4.3. Speed and acceleration optimisation in Trackdrive lap 34
4.4. Implementation . 36

5. Summary . 39

5.1. Validation . 39
5.2. Closing words . 41

Bibliography . 43

List of Figures . 44

Acronyms . 45

Glossary . 46

PREPOSITION

AUTHORS MOTIVATION

The concept of autonomous, public road transportation, once a mere dream of a handful
of engineers experimenting with magnetic tracks in the 1940s, has become a tangible reality
for the masses. We live in a world where ’robo-taxis’ operate, in a limited capacity, on
actual city streets. And robotic cleaners are a common sight in shopping centers. Although
these devices are primarily in the testing phase and their numbers are relatively small, they
actively operate alongside humans and human drivers, with statistically minimal known
instances of catastrophic failures or serious injuries.

Regrettably, pace of this revolution has been slow. Despite centuries with availability
of technology for arbitrary transportation between two points on the globe, the roboticized
solutions that have made their way into the mainstream are very limited in their scope
of operation. They necessitate constant human supervision, and crucially, the pathing
algorithms they employ are still far from optimal, rarely maximizing vehicle’s capabilities,
increasing efficiency & improving safety by adapting to road conditions.

The most prevalent pathing and control algorithms in current times, such as those found
in assist systems implemented in modern consumer cars, are often reported as operating
in unpleasant or even in manners dangerous to life. It does not seem to be difficult, to
guarantee stable operation of these systems, in testing & laboratory scenarios. But, despite
millions of miles driven and thousands of hours of machine learning, these systems are still
caught in edge cases and do not enjoy the flash of being part of any major competitions.
Human drivers are still more valued on public roads, with human experience & flexibility,
still king on race tracks.

I believe, that computerized control systems, being virtually free of distractions, can be
enhanced way beyond human capabilities and made to operate perfectly in more scenarios
than a human has the chance to experience in his lifetime. It is also plausible, as anything,
through small steps. Starting with improvements of driving algorithms used in Formula
Student competitions.

GOAL & OVERVIEW

This thesis and accompanying engineering project aim to familiarize the author and
readers with fundamental structure of a modern autonomous driving system and the steps

3

https://www.nytimes.com/2022/02/17/automobiles/tesla-phantom-braking.html

required for its implementation. The primary focus of this text is, to delve into details of
software design of a medium-size autonomous driving system, with a particular emphasis
on study of pathing algorithms and optimisation of control systems.

As arrival at the target, required many prior steps, which are no less important in
function of the final product. They deserve similar recognition to the topic coming from
the title & ultimate goal of this paper. To understand the whole package, which sustains
optimal operation of the pathing & control systems, we are going to tour through the whole
engineering process. From collective, theoretical overview, through identification of best
practices, to individual parts and implementation of the movement algorithm.

In a short term, this work is going to increase performance of a Formula Student vehicle.
In a long term, this work is going to provide the student with better understanding what
constitutes safe and agile operation of autonomous transportation, with a sturdy platform
for further development in area of vehicular motion.

In the first chapter, we are going to study, what makes an optimal collection of logic
modules. How can they be divided into separate entities, granting both parallel execution &
parallel development. In the second chapter, I am going to mention decisive factors behind
choice of goals to pursuit for the time of work around goals of this document. In third
chapter, we are going to find out how a robotics systems can be reliably coupled with a
modern, advanced simulation software suit. We are going to explore the software platform,
creation of environments, vehicles & scenarios. Then I am going to show, how virtualisation
of physical interfaces helps reduce programming overhead, software complexity & not only
speed up testing, but also make it more relevant to operation on real hardware.

After all this, we are going to conclude, with a study of the control system & its
augmentation with variable speed controller. Thus, experiencing in full, how following
good design practices can help us in better understanding of a problem, brainstorming
probable solutions and implementing them.

ASSUMPTIONS & DISCLAIMERS

As we proceed on exploring possible augmentations in vision, computation & control
models, we assume an implementation of all modules required to satisfy the threefold,
robotic model already exists. If any deviations from a popular standard or presented basic
implementation are required, they are to be described, or their implementation is to be
presented. Otherwise, we assume their initial form or non-existence.

In the introductory chapters of this document, we mention choices in technology on
both software & hardware side. With implications, their correct use bears on projects
finance & time organisation. The author is not a trained professional and cannot guarantee
that claims of increased awareness, gained from discussion of these solutions can and
will improve operation of a robotic system unrelated to this project. These are examples

4

of what has worked and continues to bear fruit in mentioned project & other endeavours
of the author. Many details regarding implementation and functional details have been
intentionally omitted, to maintain confidentiality of work provided by other contributors.
Armed with this knowledge, we approach ideation, planning & implementation of possible
approaches in improving confidence of pathing & control algorithms. These chapters
include a proof of completeness and added value.

This paper may discuss subjects related to construction & nomenclature related to
individual parts of a road going vehicle, without additional consideration whether the
reader has been acquainted with such terminology. In the text, if some unpopular terms are
used without additional explanation in attached glossary, reader is asked to refer to dictionary
provided by Cambridge Dictionary, or definitions in Wikipedia, the free Encyclopedia.

1. ENGINEERING AN AUTONOMOUS DRIVING
SYSTEM

Over the entire period of my study at Wrocław University of Technology, the Formula
Student group "Racing Team" has been deeply engaged in development of an autonomously
operating roboticized control system for their cars. This experience has allowed the con-
tributing party, to traverse the entire engineering process, akin to a journey of an ’infant’,
maturing into adolescence. All the pre-emptive steps, from ideation, design, and engineer-
ing, through testing and hours of implementation, have led us to harvest results of this work.
In the culmination of this process, we aim to clarify, how such a system is conceived and
realized.

1.1. THE BUILDING BLOCKS OF A ROBOTIC SYSTEM

Fundamentals of a robotic system can be segmented into these precise steps:

— Contemplation of the problem and the objective of the eventual solution
— Evaluation of the eventual machine we intend to operate

— Assessment of available sensor technology
— Evaluation of available computational power
— Assessment of available motor technology

— Examination of the environment in which we operate
— Consideration of available resources and personnel

These general steps, still cover considerable amount of complexity and would be excessively
challenging to study in their entirety. This necessitates further separation of each topic, into
more approachable scopes. To be precise, we are looking for topics, which can be considered
individually. As long as each topic, can be divided into smaller subjects. Subjects, providing
resources to the other subjects. We can steadily concentrate on satisfying specifications of
each of these subjects, without being overwhelmed by the entire package. This is a basic
principle of the Engineering Design Process

1.1.1. Contemplation of the problem

Embarking on the path of engineering a robotic system involves translating individual
steps of a process into increasingly smaller segments. Given that the final machine requires

6

https://webpages.charlotte.edu/~jmconrad/hsed/intr_0in.pdf

control through minute electrical signals and movement of relatively imprecise motorics,
each step of abstraction must be as descriptive and precise as possible. This has to be
achieved, while accounting for noise and errors, resultant from operating on a statistically
chaotic resolution of the external state and controls with margins of error. Significantly
increased by the nature of loose coupling of mechanical components and their vague
interactions with the environment.

In my experience, and through the experiences of other robotics engineers, a modular
methodology is a great starting point for the design specification of a robotics system.
Rarely can a project providing automated service, be assessed as a whole package. As
per the definition of "A machine capable of performing a variety of often complex human
tasks on command, by means of mechatronics, electronics, and programming solutions"[6],
there is so much more to a robotics system, than what meets the eye. This has led to the
recent emergence of currently leading robotics middleware suite, the "Robotic Operating
System". This system has been actively developed by dozens of contributors since its
inception in 2007, through the evolution of ROS2 in 2017, over 23 major releases of the
package. More about ROS in Ch.1 Engineering an autonomous driving system / Structure
of the autonomous system

To gain a more detailed understanding of how to effectively compartmentalize a robotics
project into individual modules, we can draw inspiration from the most sophisticated
autonomous beings known to mankind - humans. By examining how these autonomous
beings operate, what they seek, how they determine their most fundamental goals, and
how they achieve them, robotics pioneers have identified three key problems. When solved
individually, these problems can be integrated to create an entity capable of traversing
space.

— The localisation problem, encapsulated by the question,
"Where am I?". This problem necessitates some form of sensing and reduction of
spatial characteristics to establish a reference point for the present state.

— The self-governance and planning problem, represented by the question,
"What is my goal?". This problem requires a deeper awareness of the past and present
state in the environment to project future states into actionable instructions.

— The control and actuation problem, posed by the question,
"How do I achieve set goal?". This problem focuses on the transcription of instructions
into actions, through conversion of stored energy into motion.

This theory, succinctly summarized by the "See-Think-Act" maxim, forms the backbone
of modern robotics and is the initial consideration in compartmentalization of robotic
systems components.

7

Fig. 1.1. Exemplary system design

1.1.2. Definition of robotic trinity

Having made our first division in the design of the robotics system, it is revealed that a
robotic system can be analyzed like any other algorithm, which takes some form of input,
transforms it, and produces output organized in a way that another system can receive as
input.

1.1.2.1. Vision

Let us first consider the aspect of robotic vision. This term extends beyond definition of
an input receiver. The information we acquire from sensors, such as pixels from a camera,
cannot be directly utilized by the decision-making and pathing modules. Therefore, these
signals need to be analyzed and transformed into a form, which discloses information, that
can be acted upon. The usability of data acquired by a vision system is pivotal to accurate
operation of every other module in our system, necessitating significant investment and
refinement. For example, if the vision system does not include redundant components, a
minor defect in one of the sensors, can halt the entire operation. If the input sensors are noisy
or prone to drift, the performance will be significantly reduced despite best efforts from
filtration, analysis & motion mechanisms. If the sensors do not reliably collect information
about the task’s environment, or if control information is not receivable in some states,
the robot is unlikely to continue operation. It is important to be aware, that an automaton
can use any kind of input source that helps it understand the nature of its environment.
Just like humans, we are not limited to using cameras, lasers, and lidars. We can also
consider limb motion monitors, magnetic line trackers/contactors, touch sensors/buttons,
GPS systems, gyroscopes, etc. The vision system can be further divided into smaller
modules responsible for connectivity, data acquisition of individual sensors/sources of
control signals, signal filtration and error correction, obstacle/object/environment features
detection, active localization, and environment mapping.

8

1.1.2.2. Governance & decision making

Once the vision system has completed a sequence of its planned operation and produced
a frame of reference about the vehicle’s state, we can pass it onto systems whose responsi-
bility is to organize location and state data in temporal continuity and decide on the best
next action. The decision-making part can be divided into smaller modules responsible
for operation safety analysis and action, subsystems management/overseeing redundant
operation, goal selection, and pathing.

1.1.2.3. Action

After the robot has determined its place in space and the next step in its operation has
been planned, this information needs to be projected onto motors, actuators, displays, or
other motion or communication modules. The action part can be divided into smaller mod-
ules responsible for transformation of absolute instructions into their relative derivations,
acceptable by actuators controllers, external communications systems, protocoling and
networks interfacing modules, motor controlers and electronics.

1.1.3. Considerations in project management

When general structure of a robotic system is understood, organisational aspects come
into daylight. According to the "Guide to project management body of knowledge"[4]
by “Project Management Institute”, the preceding tasks were aimed at "envisioning the
project". This envisioning of a robotic system in general, does not take into account any
limitations posed for the final work and for the engineering process at hand. Before any
research and fabrication can commence, it is essential to select what to research, what to
prioritize and what are the constraints of budget, tooling, technology, or regulations of
the environment/competition the product is intended for. How to transition from a vision,
through budgeting, tooling, workspace allocation and operational goals?

For what can be considered a medium- to large- scale endeavour, organization and
preparation define the whole experience. Aforementioned Guide[4] is a comprehensive
900-page resource of all the information one might need to organize one’s work from the
start. Materials like this are a holy grail in constituting success and failure of a robotics
project, hence issues and processes outlined in the PMBOK[4] should not be overlooked.
For instance, consider an exemplary project. The task is in creation of a controller for
window blinds. A rotary position sensor, contactors at the edge positions, a radio receiver,
and a small engine appear to be sufficient to complete the task on a weekend. But when we
start dissecting the project into its individual components, analyzing how each should fit
with the rest, how the final product should be assembled, how each electronic component
needs to be powered and connected with the others, a complex network of wiring and
individual parts emerges, each infinitely complex in their own right. Therefore, embarking

9

on any robotic project should be undertaken with a threefold expected time reserve and
only with prior study and preparation to handle each of the individual subsystems.

1.2. PROCESSES RELEVANT TO FORMULA STUDENT COMPETITION

With an understanding of workflow in a robotics project, before we delve into the
structure of an autonomous system, we need to outline the machine we are going to operate
and the rules of the environment/competition it is going to function in.

1.2.1. What is the Formula Student Car?

In competitive scenarios considered by this thesis, we are to operate an open-wheel
passenger car, in a multitude of racing scenarios. Formula Student (FS) is the most
established educational engineering tournaments series, with teams from all over the globe,
and over 13 teams in Poland alone, struggle for the grand prize. The goal of Formula Student
is to build a single-seated formula-style car with which they can compare against teams
from all over the world not only in engineering and racing, but also in design, management
and sales abilities. Formula Student challenges the team members to go the extra step in
their education by incorporating intensive experience in design and manufacturing, but
also in considering the economic aspects of the industry. The FS competition blueprint
celebrated its 25th anniversary in 2023.[2]

For instance, the current machine built by the team from the Technical University of
Wrocław is a nimble 300kg rocket, complete with a massive aerodynamic package, powered
by two large 47kW electric motors, and equipped with individual suspension for each of its
4 racing tires. [5]

1.2.2. Important Rules & Restrictions in Roboticizing the Formula Student Car

1.2.2.1. General Rules of Formula Student Car

FSG cars are pieces of modern automotive architecture. With complex systems of carbon
fiber, aluminum, printed plastics, and the finest components in modern propulsion. Capable
of achieving acceleration in excess of 1G and deceleration over 2G, while generating a
significant amount of downforce with massive aerodynamic packages. They are extremely
dangerous creations for both the driver inside and anything that happens to be in their
path. It is an exhilarating concept and even more thrilling when experienced in person.
However, it is first and foremost part of a competition, targeted towards students with often
limited abilities and foundations, who want to develop their skills from the ground up,
through toughest challenges and interaction with latest technological solutions known to
man. Because of these two factors, extensive sets of rules developed throughout mentioned
years of Formula Student concept development are presented to candidates. Compliance

10

with these rules is verified through rigorous pre-admission testing, conducted by Marshals,
before these aspiring engineers get to test their creations on stage. First off, the vehicle
size or complexity is not limited, beyond guidelines for structural rigidity, minimum safety
requirements of the Monocoque form and materials. But it is required to be a 4-wheeled,
Open Wheel car, which fits onto a 6m wide track, capable of carrying its own weight,
including energy source, propulsion unit, and providing space for a driver, whether operated
manually or fully by a computer.

Banned in professional forms of motor racing concept of a Fan Car, is acceptable
in this formula & practiced by one or two teams on bigger competitions.

The engines, required to be either of internal combustion or electric type, have limited
power output, restricted by cylinder stroke displacement or supply power in either case, to
small 700cc, rarely exceeding 100bhp or 80kW of supply power.

This aspect of Formula Student creates initiative to reduce size, weight, complexity &
cost, while maintaining safety precautions in pursuit of overall performance.

And with this knowledge, we have realized the gravity of the situation, and complexity
of the project, without getting our hands dirty.

1.2.2.2. Rules around autonomous system & on-track goals

When it comes to augmenting the vehicle with hardware facilitating autonomous driving,
there are strict guidelines revolving around acceptable states of operation which need to
have procedures for remote and in-car control. And a whole 20 point paragraph about
emergency braking, it’s operation & required operation values. There are also many
limitations emerging from general rules about vehicle structure, which impact our abilities
in positioning actuators & sensors. When it comes to software, as long as it serves its
function, allows for unobstructed and rapid engagement of safety systems, & supports all
the expected operation modes, its structure is open for interpretation in its entirety. To
aid us in complying with required safety limitations and standardising communication of
machines state to marshals and operator, we are presented with a status flow diagram &
indicator list with colors for each status.

Fig. 1.2. Autonomous System indicator list with colors for each status.

11

Fig. 1.3. Autonomous System status flow diagram

In operation, the autonomous system needs to have programmed goals & procedures to
accomplish certain missions: Acceleration; Skidpad; Autocross; Trackdrive; Emergency
Braking System (EBS) test; Inspection; Manual driving. Plus anything that the team
might need during testing in pitlane. Remote operation is limited according to paragraphs
mentioning RES device, where anything beyond “armed, start & emergency stop” signals
is prohibited. All the configuration needs to be done through controls on car, or wired
interfaces. No wireless steering functionality is permitted.

1.3. COMPILATION OF ACQUIRED KNOWLEDGE INTO A FUNCTIONAL
AUTONOMOUS DRIVING SYSTEM

1.3.1. Structure of an autonomously operating car

In order to make development easier and more predictable during the concept phase,
based on our current knowledge, we have made following assumptions:

1. Desired sensorics
a) Vehicle speed (through rotation of wheels, or a Pitot Tube)
b) Steering position
c) Potential obstacles, track defining cones, including distance to them
d) Position of the car relative to starting line, or absolute position on earth (gps)
e) Status of on-board systems. Power unit, EBS, control systems, etc.

2. Expected controls
a) Power unit output
b) Steering motor position
c) Braking force
d) Operational status of on-board systems

12

3. AMU needs to support fast image manipulation, be a multi-core unit for improved
distribution of tasks based on required latency of operation and the platform should
help us in rapid development as much as possible.
a) A data storage & exchange solution (being the Robotic Operating System 2 [ROS

2] LTS).
b) Operating system compatible with ROS 2 (Linux kernel & Ubuntu operating system)
c) A compute unit itself (Nvidia Jetson platform computer)

4. Physical communication layer of the system
a) CAN 2.0b bus lines between sensors & control units (low weight, low latency, small

throughput, high importance data transfer)
b) Ethernet for devices like cameras, slave computation units & external control/monitoring

units (high throughput, higher latency)
5. Devices responsible for Autonomous operation

a) As modular as possible, allowing for prioritised engineering around the passen-
ger/driver, improved serviceability & handling of special or emergency states

b) Their presence should not block manual operation of the vehicle, especially in
powered & engaged, manual driving state

c) The vehicle has to permit manual operation when components of autonomous
system (AMU, sensors, steering actuators) are disengaged or removed

Selection of ROS 2 as the main component in software development, allows us to focus
on implementing logic of individual computational modules, instead of worrying about
structure of internal communication between software components. Although, for us, its
biggest selling point is not that it comes with “eProsima’s Fast DataDistributionSystem”,
with standardised schematics for publisher/subscriber data packets exchanging definitions
in both Cpp & Python. It is the fact, that it is an industry tested and approved solution, not
only available for public use without royalties, but with many basic robotics operations
extensively documented & presented in many examples. The community support for ROS
project, also brings us solutions for almost plug-and-play interfacing, with all hardware
solutions the team has come to include in the project. It is a perfect tool for both, initial
engagement with robotics and professional, commercial solutions.

To physically connect all the components of our system, electronics team, has created
a separate party of students, dedicated to handling the wiring harness & communication
devices related to autonomy. It allows us to freely connect/disconnect systems, like brake,
steering, display controllers, to/from the buses present on car, allowing us to comply with
the 4th point of our assumptions.

13

1.3.2. Overview of software design for autonomous driving

When working with Robotic Operating System, we can see, that many elements of its
structure are heavily standardised with concepts developed by industry leaders, through
15+ years of its development. These standards are not worth deviating from, so structure of
the software solution relies mostly on what has been proposed by Open Robotics in many
examples. Work has been divided into:

— autonomy_interfaces: custom messages and services, specified in ROS specific for-
mat. These definitions are used by ROS2 compiler to create internal data distribution
structures.

— autonomy_simulation: software related to simulation of the vehicle, systems managing
simulated operation & interfacing with currently adapted virtual environment provider

— autonomy_system: core of the autonomous system logic. Everything here is to be
executed on the real vehicle.
— autonomy_perception: solutions related to acquisition of physical sensor data &

its translation into structures actionable by control systems
— mission_status_management: software related to mission & status management
— autonomy_control: solutions for operating on environment information, in both

simulated & physical operation. Includes pathing & creation of instructions for
actuator controllers.

— network_interfaces: CAN & Ethernet bus related software, like translation between
ROS messages & linux kernel socketcan.

— observability: GUI modules used for system state manipulation and visualization,
mostly with ROS RQT & Rviz tools.

1.3.3. History of relevant solutions in the autonomous system

Autonomy_simulation Initial attempts in finding a suitable software suit for housing a
testing environment, have lost me months in experimentation. We have worked through
solutions providing basic tooling for mathematical modeling & unit testing, like MatLab &
its child project SimuLink. These systems work great for plugging in individual algorithms,
like state management, or control system, providing some input information and verifying
if their output matches our expectations. There was my personal, naive idea, incentivized
by amateur experience in simulation racing games. That it cannot be difficult to use a
commercial game, which already expertly models vehicle dynamics for purpose of fun and
virtual competition, to be used as testing grounds for the complete package. As it turns
out, getting data from closed, proprietary software and even worse, manipulating state of
such software, is close to impossible without mastering software disassembly. Also, out of
the question for a student project aiming for rapid iteration. Going a step further, into use
of open source examples of vehicle dynamics code for use in game engines. They are a

14

great place to learn how to create a drivable vehicle for purpose of entertainment, but these
models are nowhere near to behaviour of a real vehicle, still require a lot of additional code.
Most importantly, there are no examples how to effectively simulate desired sensors and
no support from creators of the real hardware in creation of these representations. So, in
the end, the team has gone to the trusted & endorsed by Open Robotics, GazeboSim suit.
Great for simulation of robotic arms & simple navigators. Provides more or less advanced
representations of real sensors, with at least some support from hardware vendors. And
data synchronisation with interfacing to ROS, is a breeze to use. It has served the team
well for a long time, in testing each iteration of complete autonomous operation package.

network_interfaces A package which had its conception only after many months into
the project, when need & desire to work with real sensors first came to be. Initially, the
software project did not go beyond the box of a desktop computer running Robotic Operating
System. This resulted in programmers hardcoding interfacing with ROS nodes, where
information from real hardware should be received or dispatched. This permitted us to
postpone tasks like data packaging, serialization & understanding of network APIs provided
by Linux Kernel, but when the need & desire to work with real world components arrived, we
were scrambling to get the whole project transitioned from a single package interconnected
with ROS nodes. Previous addiction to virtually unlimited power of data distribution inside
a single machine, has caused us to disregard throughput limitations, latency requirements
and prioritisation present when working with real interfaces. Consequently forcing the
team to do a complete re-organisation of the project, with re-write of all the edge operating
modules, split of low-performant modules into smaller problems and most importantly,
separation of simulation through with the wall of physical interfaces in virtualised operation
mode.

2. SIMULATION: A REPRESENTATION OF REALITY

As previously discussed, being a growing enthusiast, I have initially held a misconcepted
image, that numerous steps can be omitted at the beginning of a robotics project, with
expectation of little added overhead in later stages of development. Ensnared by previous
experience in purely software sciences and assurance of simplified development made by
ROS. While it might be true, that some simplification and focus on smaller steps is advan-
tageous for educational purposes. In the end, realization of the whole engineering process
first hand, from from inception to completion, has proven to be enlightening. But, when
it comes to professional solutions, omitting any steps in continuous fulfilment of design
objectives, incomplete blueprints, or disregard for impact of physical and computational
inaccuracies, will inevitably lead to necessity for re-designs & re-writes, often in substantial
portions of the codebase. The bigger the machine, the more complex coupling, the higher
speeds & weight, the more inertial effects, material deformation & losses of precision. Yet,
the inherently entropic nature of reality means that there are going to be imprecisions at
every level of complexity. From Roomba cleaning robots, to heavy, industrial machinery.

2.1. BENEFITS IN STARTING WITH STATE-OF-THE-ART PHYSICS &
VEHICLE SIMULATION

Drawing from personal experience, I would like to assert that integration of highly
sophisticated simulated environments into the testing pipeline of robotics systems, particu-
larly autonomous passenger cars, carries numerous advantages, with minimal drawbacks.
Modern software suits designed for representation of real world characteristics of robots
& vehicles, not facilitate comprehensive evaluation of automation systems under diverse
and challenging conditions, but also aid in early detection of omitted steps in continuous
fulfilment of design objectives. In my experience, incomplete design and disregard for
impact of physical and computational inaccuracies, represent the greatest sink of time on
debugging, redesigns & rewrites. Occurring multiple times after the product has been
deemed final and scheduled for release.
Promoting such practices, in a world boiling with Agile, iterative, test driven development
methodologies, is equivalent to fostering waste of time & resources on discarded prototypes
and hours next to drawing boards, seeking defects on graph & projections.

By incorporating simulated environments early into the testing process, allows develop-
ers to identify and rectify these issues, before they escalate into costly problems beyond

16

purview of a single department. High-fidelity simulations aid in this process revealing
issues related not only to emloyed algorithms & procedures, but also to interactions be-
tween the robot and its environment, approximate performance of the robot’s sensors, and
effectiveness of robot’s decision-making algorithms under challenging conditions.

Advanced simulated environments also enable testing beyond what would be feasible in
the physical world. For instance, they can simulate dangerous situations that would be too
risky to replicate in reality, or rare events that the robot might not encounter during its normal
operation but still needs to be able to handle. Furthermore, the low-cost, no-risk nature of
these simulated scenarios, not requiring physical hardware outside the computational units,
permits exponentially higher volume of tests.

As mentioned in the History of relevant solutions in the autonomous system. Throughout
years of experimentation, I have explored as many simulation solutions as the time permitted.
From purely discreet, mathematical solutions, to those incorporated into workflow of this
thesis. Both approaches have their place in the testing & validation process, like Unit
Testing for discreet solutions and object detection tests for the advanced virtual environ-
ments. However, using sub-par solutions for simple tests, might be more cumbersome
in development or slower in execution, using a sub-par solution for simulation of whole
scenarios and real world operation is equal or even worse than not using anything.

Fig. 2.1. Graphics of a popular robotics
environment

Fig. 2.2. Graphics of a state-of-the-art
simulation solution

2.2. CREATION OF PLUG-AND-PLAY INTERFACES BETWEEN SIMULATION
& PHYSICAL SYSTEMS IS IMPORTANT

Drawing from previous discussions, where significant divergence in completeness of
software & hardware parts of a robotic system is mentioned. I would like to point out that
a software team, focused exclusively on working with data from virtualized systems for
extended periods, is destined to offhandedly construct systems and software interfaces,
which are not readily portable to work with the hardware they are intended for. Such events
have led the Formula Student Autonomy project in Wrocław, to undertake a re-write of the
data exchange code, reorganisation of ROS message types, and additional optimisations

17

of code concerning throughput & priority. While stating & following limitations of target
hardware, along with programming with these targets in mind, would have saved dozens
of programming hours. For a student engineer, it has been difficult to make a convinced
decision, which limitations are relevant to the project and need to be taken into account.
However, an experienced engineer, aware of possible communication standards and what
are their main uses, is not going to be faced with a problem, for which he is not going to be
able to pick target components and verify, which sockets & communication standards they
provide. Implementation of relevant interfacing does not pose much of an issue, as most of
the details & edge cases are handled by libraries like SocketCAN (Linux Kernel), or DDS
(Robotic Operating System). Their inclusion in the design is a matter of awareness and
foresight, which result in not only major reduction in labor, but also their alignment with
modular design, making them a valuable asset in the workflow.

2.3. UNIVERSAL INTERFACES & MODULAR DESIGN IMPROVE TESTING
WORKFLOW SIGNIFICANTLY

When testing software of a robotic system in a simulation, we can choose to easily
capture required memory state of the simulation & use it in our systems with addition of a
few noise generators & control scripts. In no-time we get our robotic software interacting
with virtual hardware. But what happens if we are tasked to adjust our software to work
with real hardware? Or even just switch to a different simulation software suit? All the
software working in sync with the state of current simulation, has to be adapted from
ground up, to work with alternative interfaces, data types, libraries, clocks. Wouldn’t a
unified translation layer make things much simpler, when switching between these systems?
We are already aiming to use some physical interfaces, for which some data serialization
schematics are made. If we adapt our initial design to these schematics, we are no longer
swapping between communication over physical interfaces and spoofing data in software.
Instead we jump from virtual interfaces, made to operate indistinguishably from the real
thing, straight into working with physical interfaces. If we put a little bit of effort into
matching these two worlds, we are moving large portion of work destined for programming
data adapters and investing it into productive work.

3. ENGINEERING SOFTWARE INTERFACES,
UNIVERSALLY COMPLIANT WITH BEAMNG
SIMULATION & REAL COMPONENTS

When attempting to couple a robotics system with simulated environment and the
knowledge of used hardware components, especially their communication protocols is
known, based on statements from ch. 2, I support the claim that maintaining communication
over the same protocols, when working with real components & a simulated environment.
When protocols & communication standards, for interfacing with physical components be-
come known, it is the last moment, where development without support for these protocols,
might not inflate technical debt.

The autonomous driving system we are working on for this thesis, has already been
adapted from completely internal system, for data exchange between the logic and simulated
environment. In following steps, I am going to describe my thinking & design process, with
examples in creation of such interfaces with a machine running BeamNG.tech simulation
suit.

3.1. DESIGNING THE ROBOTICS SYSTEM AROUND CONCEPT OF
MODULARITY

To best understand the mode and priority of operation for each hypothetical module,
which we are going to introduce into our robotics system, I have started analysis of the
system based on “See-Think-Act” division trinity and began my work from desired output,
through median steps, to required input.

Our Actuation third of the system, is to result in actuation of braking system, modulation
of engine power & rotation of steering shaft. Final output signals, relevant to the software
component, are to be instrumental for operation of a three distinct actuators, which need to
function in relative harmony. In a simplified stack, these systems can be controlled from a
single module, part of the Autonomy Main Unit (), but the project may include a Vehicle
Performance Unit (). A VPU is to take control signals from AMU and augment these
signals with high precision optimisations, at low latency and high rate. With VPU in the
loop, the output signal from AMU no longer requires us to provide signals interpretable by
a motor control board. In the case of our car, we are going to limit ourselves to outputting
desired maximum speed of the center of mass & desired turning circle. Additional benefit

19

of tasks separation between a lower frequency AMU and high frequency VPU, is the
fact that BeamNG.tech software includes algorithms used in VPU. Systems like torque
vectoring and traction control can be made part of the vehicle definition, sparing us the
work in recreating these functions and their characteristics on our own.

To create these desired displacement vectors, we need to know between which points
this traversal is permitted, safe & as optimal as we are able to make it. For this task, a
pathing algorithm needs to be created, which is to take information about the environment
around it and draw safe passage based on its immediate state. A basic pathing algorithm
is enough to allow for low speed traversal. Unfortunately, basing our next step solely on
information about current appearance of a few meters in front, does not leave us with much
space for performance improvement.

To combat this issue, a long term pathing algorithm has to be added, parallel to the
temporal pathing algorithm. This long term pathing algorithm is to operate on informa-
tion from previously traversed & mapped environment. Creating this long term pathing
algorithm & optimising its operation, in combination with modules providing input data,
are a source of the biggest leap in on-track performance, allowing the car to reach speeds
beyond few meters per second. The long term planning algorithm is to be combined with
the temporal pathing algorithm in a path pursuit module, which takes on the incredibly
important task of being the source of truth for the path the car is going to take in reality.

For the next steps, we consider the control hardware divided into:

— A set of motor controllers, responsible for powering control motors (part of simulation).
— A Vehicle Performance Unit, responsible for creation of precise, desired force instruc-

tions, based on physical capabilities of the car
— An Autonomy Unit, responsible for pathing and creation of motion vector for the VP

unit.

3.2. CREATION OF TESTING SCENARIOS IN BEAMNG.TECH

3.2.1. The platform

BeamNg.drive is a full featured and versatile driving simulator with unique physics
engine developed in-house and based on soft-body deformations powered by beams and
simplified, interconnected structures. Its initial development was based on academic work
in soft-body physics, turned into a multitude of video game editions. Initial creation named
“rigs of rods”, evolved to “beams” developed on top of Crytek CryEngine3 graphics engine
and later moved to open source torque3D engine. Thus becoming the starting ground for
current versions of the video game and simulation suit. Thanks to developers academic
background & transparent approach to the video game as a catalyst to grow interest in the
technology, an extended edition of the software has been worked on alongside the casual

20

experience. Called BeamNG.tech
Key features and capabilities of BeamNG.tech include[1]:

1. Soft-Body Physics: the physics model provides believably accurate simulation of
real-world deformation characteristics and coupling inaccuracies of vehicle compo-
nents. It enables simulation of various vehicle dynamics, including weight distribution,
impact/tensile stress forces propagation & energy distribution of power train, with
accurate losses. The soft-body physics engine is also applied to tire contact simulation,
resulting in their incredibly believable behaviour, including different pressure levels,
centrifugal force deformations at speed etc.
The physical car model extends beyond soft-body parts. It includes impact of tempera-
ture on power and dissipation of this temperature, highly customizable aerodynamics
characteristics (up to ability to create airplanes), etc.

2. Model-in-Loop (MIL) Testing: BeamNG.tech includes all the required tooling and
control scripts for MIL testing. With straight forward integration of BeamNGpy library,
the simulation can be easily launched, managed & controlled, on as many systems and
scenarios as the user desires.

3. API and Automation: The BeamNG team provides not only a set of open-source
tool for automation of services execution. They also provide support for integration of
BeamNG.tech into any development framework with an extensive memory mapping
API. Thus enabling testing & quality verification through reading and controlling every
component of a car.

4. Ready-made Sensors sim: BeamNG.tech provides a set of simulated representations
of data acquisition systems. Including an array of vision sensors, like cameras, Lidar,
Radar & ultrasound, with access to plenty of other information, like position and speed
of individual nodes and motors on the car.

5. Customizable Vehicles & Drivetrain: BeamNG.tech not only comes with a wide
range of highly detailed and configurable vehicles with realistic driving dynamics. It
also provides a complete tooling suit and a plethora of guides, for creating personalised
vehicles, just as detailed as those provided with the software. This includes completely
custom suspension, frame & powertrain characteristics. From CVT electric cars, to 12
gear diesel trucks. Vehicle behaviour and operation of individual components can also
be extended, using Lua extensions, allowing for fast development iteration times.

6. Traffic Simulation: Autonomous driving training and testing extends to creation of
real, public road traffic scenarios in various environments. Custom paths and behaviour
for traffic can be scripted, including correct reactions to signalisation and road rules,
with randomised placement of vehicles ranging from small, city cars, to long range
haul trucks.

7. Environments: BeamNG.tech offers 12 hand-crafted, open-world environments with

21

hundreds of miles of roads to traverse. Spanning from city centers with complex lane
layouts, through rural villages to highways in rural environments.

8. Complete customisation: BeamNG.tech provides editors for everything, from custom
scenarios, full environment sculpting and object placement, up to on-the-fly customiza-
tion/swapping of vehicle parts. The World Editor is a powerful tool, allowing for
creations on par and better than what is provided by the development team.

When working on autonomous driving scenarios, we are provided with everything
that one might need to test the robotic system. The only limit is our imagination and
desired time investment for experimentation. For the purpose of preparing for formula
student competition, we can start from simple cone track configuration on a flat plane, up
to recreations of real stadiums we get to compete on.

3.2.2. The environments

To support engineering work in this thesis, we are going to create two, simple scenarios.
One being an autocross circuit and one being an acceleration stage. To focus on providing the
basic facilities, neither including additional obstacles, or changes in ground elevation. Thus
meaning we are only to create traffic cone limited spaces, understood by the autonomous
systems programming and standardised by the formula student guide books.

BeamNG provides three methodologies for creation of objects/obstacles.

1. Static, non-interactable objects - 3d objects or sprites on 2d planes, without defined
or activated collision properties. These objects cannot be collided with or displaced in
any way, other than modification in World Editor. Can be used for saving resources
on objects that are not reachable by the actor, or in our case, to allow the controller to
make mistakes and continue driving without requiring to restart the whole scenario.

2. Static objects, with collisions - 3d objects or sprites on 2d planes, with defined and
activated collision meshes. These objects also cannot be displaced in simulation and
collisions with them are always hard and not-deforming. Can be used to define hard
limits of the track, or for unforgiving testing, where any mistake is most often going to
result in halting of the car.

3. Vehicles - Every object in BeamNG which has weight, soft-body deformation physics
and ability to be displaced, has to be defined as a vehicle. This allows us to place cones
which can impede movement of the car, deform and be left on track in unexpected
locations. Thanks to this, we can test how the localisation and mapping system handles
rejection of such anomalies and if it stays on previously defined track.
Unfortunately, the fact that such object inherits properties of a vehicle and has the
same computational priority as our main actor (formula car), creating scenarios filled
with complex, deformable environments, quickly overwhelms even the most powerful
modern CPUs.

22

For the purpose of this thesis, we have created both autocross and acceleration scenarios,
filled with traffic cones of each of the type. Non-interactable version is to be used for basic
testing, deformable version used for testing of localisation and mapping and one with hard
cones, is to be used for unit testing and some planned optimisation of path planner, based
on machine learning.

A method for manual tracing of images of tracks, has been described in a project previ-
ously aimed to be used with Gazebo. https://github.com/HighPriest/SvgGazeboCones
The output XML structure is easily translatable into XML structure used by BeamNG
scenarios.

3.2.3. The Vehicle

Vehicles in BeamNG.drive are contained in freely movable directories, which are
required to contain:

— info.json file - a file describing information visible in GUI, like name, author, drivetrain
type

— mesh & texture files - files which define visual appearance of the car (e.g. .dae, .dds,
.png extensions)

— jbeam files - files which define the beam structure of each vehicle component and their
default properties. This includes information about powertrain, brakes & suspension.

— lua scripts - scripts which executed with instantiation of the car model. They allow for
interaction with systems present on the car. Including driving & sensors configuration

— part configuration (.pc) files - files defining compilations of standardised components
named and defined in jbeam files.

Other than the main structure definitions held in .jbeam files, contents and creation
of each of these files is presumably straight forward. Contents of .jbeam files follow a
hierarchical structure written in JSON format. Exemplary structure of car chassis is as
follows:

"object_name": { // whatever we like
"information":{

"authors":"Kamil Śmigielski",
"name":"BeamNG Chassis Part", // whatever we like

},
"slotType" : "FormulaCar_Chassis", // personalized name of the component,

or main for the top most definition↪→

"slots": [
["type", "default", "description", "additional parameters"]
["FormulaCar_Engine","FormulaCar_Engine", "Engine",{"nodeOffset":"1"}],

],
"controller": [// links to sub-modules that control various functions of

a vehicle through bindings in lua scripts.↪→

23

https://github.com/HighPriest/SvgGazeboCones

["fileName"],
["vehicleController", {}],

],
"refNodes":[// shared reference points for car orientation

["ref:", "back:", "left:", "up:", "leftCorner:",
"rightCorner:"],↪→

["fr3r", "fr4r", "fr3l", "fr3tr", "fr1l", "fr1r"],
],
"flexbodies":[// links to meshes and with which jbeam group they are to

deform↪→

["mesh", "[group]:", "nonFlexMaterials"],
["TPUF_Body", ["FormulaSpaceframe"]],
["TPUF_BodyBolts", ["FormulaSpaceframe"]],
["TPUF_Frame", ["FormulaSpaceframe"]],
["TPUF_FrameRails", ["FormulaSpaceframe"]],
["TPUF_Dash", ["FormulaSpaceframe"]],
["TPUF_DashBolts", ["FormulaSpaceframe"]],
["TPUF_DashSwitches", ["FormulaSpaceframe"]],
["TPUF_Windscreen", ["FormulaSpaceframe"]],
["TPUF_WindscreenBolt", ["FormulaSpaceframe"]]

],
"nodes":[// points of attachment for beams, these should not be edited by

hand without aid of vehicle editor and beam visualization tool↪→

["id", "posX", "posY", "posZ"],
{"selfCollision":true},
{"collision":true},
{"nodeMaterial":"|NM_METAL"},
{"frictionCoef":0.6},
{"group":"FormulaSpaceframe"},

{"nodeWeight":1.6},
//Floor
["fr1l", 0.178, -1.311, 0.09],
["fr3l", 0.32, -0.175, 0.09],

["fr1r", -0.178, -1.311, 0.09],
["fr3r", -0.32, -0.175, 0.09],
{"nodeWeight":2},
["fr2l", 0.29, -0.75, 0.09],
["fr2r", -0.29, -0.75, 0.09],
["fr4l", 0.32, 0.42, 0.09],
["fr4r", -0.32, 0.42, 0.09]

],
"beams":[// spring & damper connections between nodes

["id1:", "id2:"],
{"deformLimitExpansion":1.2},
{"beamPrecompression":1, "beamType":"|NORMAL"},
{"beamSpring":1501000,"beamDamp":150},
{"beamDeform":50000,"beamStrength":"FLT_MAX"},

//floor

24

["fr1l","fr2l"],
["fr2l","fr3l"],
["fr3l","fr4l"],
["fr4l","fr5l"],
["fr1r","fr2r"],
["fr2r","fr3r"],
["fr3r","fr4r"],
["fr4r","fr5r"],
{"deformGroup":"taillight_break", "deformationTriggerRatio":0.01},
["fr5l","fr6l"],
["fr5r","fr6r"],
{"deformGroup":""}

],
"variables": [

["name", "type", "unit", "category", "default", "min", "max", "title",
"description"]↪→

["$brakestrength", "range", "", "Brakes", 1, 0.6, 1.0, "Brake Force",
"Scales the overall brake torque for this car", {"minDis":60,
"maxDis":100}]

↪→

↪→

["$ffbstrength", "range", "", "Chassis", 1, 0.5, 1.5, "Force Feedback",
"Scales the force feedback strength for this car", {"minDis":50,
"maxDis":200}]

↪→

↪→

],
}

Sensors are not part of the jbeam structure, instead they are instantiated completely
dynamically. Either inside the always present, internal .lua scripts of the vehicle, or by
external API. By example, an Inertial Measurement Unit can be created with

extensions.load('imu')
imu.addIMU(name, pos, [debug])
// or imu.addIMUAtNode(name, node, [debug])

then we can poll the IMU instance for its measurements. If it has been created correctly,
it should start returning an array structure:

{ "aX": "0.00046557877210677",
"aY": "4.8179574853672",
"aZ": "0.0015101531196775",
"gX": "-3.9092405963171",
"gY": "-5.8214835947941",
"gZ": "0.026276952910208",
"name": "IMU",
"pos": "vec3(0.73,0.51,0.8)" }

25

3.3. CREATION OF ‘VIRTUAL’ INTERFACES IN BEAMNG.TECH. POLLING
SENSORS & REQUESTING CONTROLS.

Before we are able to start working on interfacing between the simulation and au-
tonomous system programming, we need to go through a few preliminary steps:

1. What are the requirements for execution of these programs. Their compatibility with
operating system & hardware requirements?

2. How we actually need this software to be distributed? Should everything run on a single
machine, multiple machines, a high power, cloud computational service?

Software for autonomous operation has been written from ground up to function on the
target Main Unit. As this main unit has been a Nvidia Jetson solution for a few years now,
the programming relies heavily on its features, with a few compatibility additions which
allow it to work on a compatible Linux machine equipped with a modern Nvidia GPU.
This forces us to run it on either Jetson hardware, or a workstation with highly customised
Linux operating system. Here is a hardware requirements form for autonomous system

OS: Ubuntu Linux 20 + ROS2 Foxy
CPU: Quad core 2GHz equivalent of a recent intel core cpu
RAM: 512 MB
GPU: NVIDIA GPU with CUDA Compute Capability beyond 8.X

& compatibility with CUDA Toolkit 11.4+ (RTX 3XXX series+)
Storage: 1GB

On the other hand, BeamNG has been primarily written to work on popular for recre-
ational use, Windows operating system. Although in recent releases a Linux compatible
executable has been introduced, its created with help of an emulation layer for heavily
relied on Windows specific APIs. This makes the Linux version much less performant and
often unpredictable in execution stability. At the time of writing, developer team works on
porting the graphics API to VulkanAPI, which should allow the simulated environment
to be safely executed on Linux OS. Here are the published requirements for a machine
running BeamNG

OS: Windows 10 64-Bit
CPU: AMD Ryzen 7 1700 3.0Ghz / Intel Core i7-6700 3.4Ghz (or better)
RAM: 16 GB RAM (less in our case, when running simple scenarios)
GPU: Radeon HD 7750 / NVidia GeForce GTX 550 Ti
Storage: 20 GB available space

It becomes apparent that to run both packages on a single machine, it needs to be a
recently released, powerful workstation machine, capable of performant virtualisation of
two operating systems & direct assignment of CUDA units strictly to one OS.

26

Or, two machines. One, a popular grade gaming desktop to support autonomy software
and a cheap, second hand workstation to support the simulation.

3.3.1. Architecture

To know for which interfaces a connection, data source or data sink needs to be created,
we need to take a look at the current design of the autonomous system, destined for
assimilation.

Fig. 3.1. Interfacing architecture

On the figure 3.1, we can observe, that the system ingests a deluge of information,
coming in over two CAN lines and two TCP/IP connections. One IP connection coming
from LIDAR and one from Camera combined system. The state changing controls, other
than actual electric power engaging switches, are also coming in through CAN lines. Their
representation can be added into interactive part of the simulation. As the main aim for the
simulation suit is to be the external program we launch from the workstation we develop
autonomous system on, it is not a priority.

Through design and implementation attempts, I have concluded that the most straight-
forward topology for remote interfacing is a flow similar to this diagram.

27

Fig. 3.2. Network & data exchange design

Here, a BeamNG Bridge process is executed on the machine housing the Robotic
Operating System. This bridge creates a TCP/IP connection with a computer containing
simulation software. From the autonomy machine, we choose desired scenario, requests
its launch & start exchange of sensors & control information through TCP/IP and back
through ROS Nodes. Received information is then pushed onto vCan transcribers, which
push the information from the sim, into packets expected by the data reception & filtration
modules.

An alternative, is to acquire a machine which can both run the simulation and either
includes CAN ports like the Nvidia Jetson computer, or a daughter board with these ports.
Then the AMU could be removed from the car and connected to an indistinguishable from
real thing, virtual environment. This requires execution of BeamNG bridge wholly on the
Simulation machine, including vCan transcription modules.

3.3.2. Programming

Now we can begin working on programming the desired components on both sides of
the computational exchange. Starting on the side of simulation, we need to instantiate &
make following parts available over the network:

— 1x Lidar - 3D point cloud, with parameters similar to Velodyne HDL-64E
— 1x Camera - Colour image - Pixel-wise depth map & object tagging
— 1x INS (GPS + Inertial unit) - Absolute vehicle positioning
— 2x IMU - Temporally relative vehicle positioning
— 4x Wheel speed
— 1x Steering column position

Motors:

28

— 1x 80kW electric motor
— No clutch or gear system

Additional controls:

— Start, emergency stop buttons
— Mission selection buttons

A BeamNGClient object is created, to manage information related to connections with
the simulation machine.

default_scenario = Scenario('smallgrid', 'Default',
'/levels/smallgrid/scenarios/Default.json')↪→

default_vehicle = Vehicle('local_identifier',
model='name_of_the_car_in_files',
part_config='vehicles/name_of_the_car/PartsCollection.pc',
license='AI')

↪→

↪→

↪→

def __init__(self, scenario=default_scenario, vehicle=default_vehicle):
self.client = None
self.scenario = scenario
self.vehicle = vehicle

def connectClient(self):
beamng = BeamNGpy('localhost', 64256, home=BNG_HOME, user=BNG_USER)
try:

self.client = beamng.open(launch=False, deploy=False)
except:

self.client = beamng.open(launch=True)

BeamNGpy middleware is written in a way, where the BeamNGpy class is used mainly
to initiate connections, to which objects caching information about the world are attached.
Then, these world objects are automatically filled with new information, whenever we
interact with them. Hence we create scenario & vehicle objects. These objects are
prefilled with already known definitions, but can be reassigned dynamically, with whatever
world / vehicle we might desire. Scenario changes require a reload, but vehicles can be
removed & added at will. Also, if the local software crashes, we allow for re-connection to
the already running simulation.

Here is an example of dynamic scenario creation, where we add the vehicle into the
world, by hand.

def loadScenario(self, scenario=None):
if scenario is None:

self.scenario = self.default_scenario
if self.scenario.get_vehicle('TPUFormulaBee') is None:

29

self.vehicle = self.default_vehicle
self.scenario.add_vehicle(

self.vehicle, pos=(-29, -39, 0), rot_quat=(0, 0, -0.7071068,
0.7071068))↪→

#self.scenario.make(self.client)
self.client.scenario.load(self.scenario,

connect_existing_vehicles=False, connect_player_vehicle=True)↪→

self.client.settings.set_deterministic()
self.client.settings.set_steps_per_second(60)

else:
self.client.scenario.load(self.scenario)

Then, in the main program loop, all we need to do is:

beamng = BeamNGClient()
beamng.connectClient()
beamng.enterScenario() #additional wrapper around loadScenario, loading

the default one, starting execution and enabling all the additional
features

↪→

↪→

BeamNG allows for instantiation of sensors using both internal .lua scripts and external
API, with which we can interact using BeamNGpy middleware. In our example, we
want to create a lidar sensor, store its readings and advertise them on ROS network as a
pointcloud.

from sensor_msgs.msg import PointCloud, ChannelFloat32
from geometry_msgs.msg import Point32

self.lidar_publisher = self.create_publisher(
msg_type=PointCloud,
topic=self.get_parameter('topic_lidar').value,
qos_profile=10

)
self.msg_lidar = PointCloud()

lidar = Lidar('lidar', beamng.client, beamng.vehicle, pos=(0,-1.7,0.2),
dir=(0, -1, 0), horizontal_angle=180, requested_update_time=0.01,
horizontal_angle=60, is_visualised=True)

↪→

↪→

def publishLidar(self):
data = self.lidar.poll()
self.msg_lidar.header.stamp = self.get_clock().now().to_msg()
points = data['pointCloud']
intensity = data['colours']
for point in points:

self.msg_lidar.points.append(point)

30

self.msg_lidar.channels.intensity.values = intensity
self.lidar_publisher.publish(msg_lidar)

We can then make the lidar readouts be published on a timer, or through querying the
simulation, whether a new lidar reading is available and sending this new reading

if lidar.is_ad_hoc_poll_request_ready():
self.publishLidar()

Because the Lidar we use is connected through internet and has its own ROS interpreter,
we don’t need to convert it into CAN Frames.

But, for motion sensors (IMU), on each update of data in their ROS node, a data
conversion is done by a transmission emulator written in Cpp

frame.header.stamp = imu->header.stamp;
// frame 1
frame.id = 0x174;
frame.dlc = 8;
const double factor_gyro = 0.005;
const double offset_gyro = -163.84;
auto val =

static_cast<uint16_t>(((imu->angular_velocity.z * kRadToDeg) -
offset_gyro) / factor_gyro);↪→

frame.data[0] = (val >> 0) & 0xFF;
frame.data[1] = (val >> 8) & 0xFF;
const double factor_acc = 0.000127465;
const double offset_acc = -4.1768; // simulates gravity reading this

sensor doesn't account for on its own↪→

val =
static_cast<uint16_t>(((imu->linear_acceleration.y * k_m_s2_toG) -

offset_acc) / factor_acc);↪→

frame.data[4] = (val >> 0) & 0xFF;
frame.data[5] = (val >> 8) & 0xFF;
can1_transmit_pub_->publish(frame);
// frame 2
frame.id = 0x178;
frame.dlc = 8;
val = static_cast<uint16_t>(((imu->angular_velocity.x * kRadToDeg) -

offset_gyro) / factor_gyro);↪→

frame.data[0] = (val >> 0) & 0xFF;
frame.data[1] = (val >> 8) & 0xFF;
val =

static_cast<uint16_t>(((imu->linear_acceleration.x * k_m_s2_toG) -
offset_acc) / factor_acc);↪→

frame.data[4] = (val >> 0) & 0xFF;
frame.data[5] = (val >> 8) & 0xFF;
can1_transmit_pub_->publish(frame);

31

// frame 3
frame.id = 0x17C;
frame.dlc = 8;
val =

static_cast<uint16_t>(((imu->linear_acceleration.z * k_m_s2_toG) -
offset_acc) / factor_acc);↪→

frame.data[4] = (val >> 0) & 0xFF;
frame.data[5] = (val >> 8) & 0xFF;
can1_transmit_pub_->publish(frame);

3.3.3. Testing

Thanks to these creations, we can start with a test of our object classification model
using BeamNGs pixel-wise object tagging and comparing this output with the areas our
model places the object at. This, incredibly, can be used to incorporate machine learning
into the process and improve precision of object tagging, by training on theoretically infinite
set of data.

Until now, all the object recognition data has been created & labeled by hand by us and
also other competitors, then shared in a public repository at https://www.fsoco-dataset.
com/. This is a very good base, but we can use our newly created infinite worlds with perfect
data, to enhance the dataset with images from a virtual camera. For this, we are going to
run the simulation on multiple different tracks collecting images with precise position of
the obstacle. Then, these images don’t have to be labeled by hand using LabelImg software
https://github.com/heartexlabs/labelImg, like it was done until now, but large
dataset is going to be created automatically. In the future, generated images can be even
enhanced with filters imitating dirt on lens or sun glare.

As we will be able to observe in following chapter, the simulated environment allows
us to quickly test & benchmark changes to pathing & control systems aswell.

https://www.fsoco-dataset.com/
https://www.fsoco-dataset.com/
https://github.com/heartexlabs/labelImg

4. EXTENDING PATH FOLLOWING ALGORITHM
WITH SPEED CONTROL

A simulated environment provides us with an infinite collection of testing scenarios
and provides pixel-perfect methods for verification & tuning of positioning and pathing
algorithms. An invaluable tool for study, experimentation & development of control
systems.

In this part, we are going to extend an algorithm for pure pursuit of a temporally limited
path. And study, how such a system can be extended.

4.1. DISTILLING TRACK DRIVING RULES OF FORMULA STUDENT
COMPETITION

The circuit driving based contest is divided into stages of a singular Exploration lap and
a set of Endurance laps, both timed, but timed separately. Exploration lap requires from us
not only to pass successfully, but also to create a map of the environment for further laps.
Because of this, our best bet for the Exploration lap, is to ensure reliable conquest of the
track, to not compromise mapping accuracy. While this contest is also timed, we can not
compromise in haste.

In Endurance contest, when the circuit is mapped, we are able to focus on full path
optimisation, by creating both expected position and speed profiles for the whole circuit,
using pre-calculated models.

4.2. UNDERSTANDING THE PATH PLANNING ALGORITHM

For the task of defining a path through a field of points, a Rapidly-exploring Random
Tree algorithm, ideated, implemented & shared publicly, by Maxim Yastremsky [7]

The path planner operates by creation of triangular connections between 2 dimensional
vectors, using Delaunay triangulation algorithm. These 2 dimensional vectors, have been
defined by prior obstacle detection system. Because of potentially infinite complexity of
such process, it is limited, by both certainty in object detection & tunable limitation in
amount of triangles.

A stack, listing connections between centers of edges of Delanuated triangles, is created.
Then, the Rapidly-exploring Random Tree algorithm draws possible paths, limited by
additional control factors, defined by cost of their respectable characteristics. E.g. Blue

33

https://github.com/MaxMagazin

cones on the left of the connection, yellow on the right, angle change below 60deg, or
general heading direction away from the start point.

Fig. 4.1. Delaunay Triangulation

This algorithm permits us to traverse a world with only knowledge about feature im-
mediately in front of the subject. At each update step, detected obstacles are fed back to a
Simultaneous Localisation & Mapping algorithm, which stores their positions for later use.
When the whole track is traversed and the SLAM algorithm detects that the subject is back
at the start, vehicle is put into stopping state & the Trackdrive algorithm seizes operation.

4.3. SPEED AND ACCELERATION OPTIMISATION IN Trackdrive LAP

There exists a multitude of plausible approaches for controlling vehicle speed and
acceleration rate. First, here are some clarifications of destined properties we are to work
with. These are going to help us understand how to approach the calculations.

— Speed (goal): as in “The next point in our path, has the Speed goal of e.g. 50km/h”
— Acceleration (goal): as in “To achieve 50km/h at the next point, we need to accelerate

at rate of 5m/s2”
— Jerk (goal): as in “how quickly can we increase the acceleration to reach desired

acceleration rate”

To calculate Speed (goal), we can seek maximised product of turning radius (angle
between points connecting vectors) and lateral grip algorithm (Clamped for safety).
To calculate Acceleration (goal), we can seek maximised product of speed difference from
current to goal at next point. Because we want to reach the goal speed not at the goal, but
ASAP, distance is not needed.
To calculate Jerk (goal), we can seek maximized rate of change of acceleration, while

34

limiting calculated value, by factors preventing loss of longitudinal grip & unnecessary
wear and tear on the vehicle.

Because there are multiple layers of decision making in creation of control signals, we
need to study & decide, which layer is going to take care of which limitations. These layers
are: Autonomy Main Unit; Vehicle Performance Unit; Electronic Control Board

An easier solution is to create a 0-100% engine power request (Figure: 4.2), calculated
by a hand-tuned PID controller, straight from the AMU software, without bothering oneself
with resultant torque.
To avoid twitchy motion, very high Integration(PID) values might need to be used, or
alternative base states might need to be provided, based on the current state of operation.
To avoid loss of traction, a torque clamping algorithm needs to be employed. This software
module is to observe change in wheel speed and react to sudden acceleration spikes, with
significant reduction of output signal.
To avoid exceeding safe speed, we need both safe braking distance calculation & absolute
maximum speed we feel safe to let the vehicle travel at.

Fig. 4.2. FlowChart of simplified acceleration controller

Second proposition (Figure: 4.3), is to reduce influence of AMU on resultant torque.

35

And passing this responsibility, to modules capable of higher frequency operation, on larger
set of input data. Through communication of desired speed straight from AMU, to VPU,
we can exploit its features & precalculated power-to-acceleration LUT, for high fidelity
governance over longitudinal acceleration.
This implementation requires coordination with the team team responsible for the pow-
ertrain. First, results of dynamo-metric measurements is required. Secondly, tire grip
functions need to be created & embedded into the script.

Fig. 4.3. FlowChart of advanced speed controller

4.4. IMPLEMENTATION

To comply with goals of this thesis, we are going to focus on implementation of the
latter solution, incorporating variability in speed into the path following script.

Variables required for calculations:

— Vfrontwheels

36

— Vlongitudinal & Vlateral

— Pacejka Model Coefficients: B = 10, C = 1.9, D = 1.0, E = 0.97

— Dlookahead minimum distance for objective seeking & steering destination

Calculations to be executed:
Current Slip Angle

Lsa = (Vfrontwheels − Vlongitudinal)/Vlongitudinal

Friction Coefficient

µ(ρ) = DPacejka ∗ sin(CPacejka ∗ atan(BPacejka ∗Lsa−E ∗ (B ∗Lsa− atan(B ∗Lsa))))

Distance (max)
D = Dlookahead + (Vfrontwheels) ∗ µ(ρ)

Road angle
Rangle = angle(D)− angle(Dlookahead)

Bend curvature
(2 ∗ sin(Rangle))

Dlookahead

Speed (max)

Vmax =
Gravity ∗ µ(ρ)
Bendcurvature

Acceleration (goal)

Ag =
V 2
max − V 2

current

2D

Since loss of stable tire friction results in significant deviations from movement trajec-
tory, we are not aiming to drive at the absolute maximum possible speed.

These calculations are based on Masters Thesis:
Longitudinal and lateral control of an autonomous racing vehicle[3]

Coefficients B = 10, C = 1.9, D = 1.0, E = 0.97 for the Friction Coefficient calcu-
lations, based on Pacejka Tire Model, have been sourced from proprietary specifications,
provided by the manufacturer of Hoosier Tires. The resultant operation is satisfying, no
further consideration is given.

For more accurate speed control, calculation of road-tire friction coefficients, specific
for the whole vehicle package are required. These can be determined solely, by complicated,
experimental evaluation, or approximated through simulations.

This model is thought out to work in natural/analog stages. Not through discrete modes
of operation, but by mathematical functions.

— If the vehicle is traversing on a straight line, with no defined apexes, both high speed

37

goal and a large distance to the goal are given.
This results in always high value of desired acceleration posed by the Speed (max)
equation.

— The target accelerator position and resultant forces are transposed onto the longitudinal
velocity & result in Slip Angle reduction.

— If the vehicle is approaching a corner with defined apex distance, a lower Bend Curvature
is given.
This might result in the car sustaining higher velocities than expected.

— When distance to Apex goes below safe braking distance, given by Acceleration &
Longitudinal Grip functions, emergency procedures are executed

5. SUMMARY

5.1. VALIDATION

The autonomous driving system has been executed with two different speed control
algorithms, on identical testing scenario, consiting of a cone defined track with multiple
cornering types, created according to FSG rules. Two algorithms are being tested:

— The default, single safe speed algorithm (on the right)
— New, speed managed algorithm (on the left)

we can see significant improvements on straight sections of the track, with instabilities in
braking zones and more careful behaviour in corners.

Fig. 5.1. SpeedGraph of Managed (left) and Set (right) speed algorithm

Shape comes from reading GPS positioning data, while the color represents speed of
vehicles rear wheels in km/h.

We can observe the difference our new algorithm brings, by placing checkpoints in crucial
spots on the track & recording the time at which we arrive at each of them.

39

Fig. 5.2. Map of timing checkpoints

Fig. 5.3. Time difference graph

The green line represents time difference between following checkpoints, starting from
starting line, at the intersection of graph axis, to checkpoint 10 at the end of the graph. The
blue line represents difference in arrival at the Nth checkpoint, measured from starting
point and a yellow trend line of time reduction

40

We can also compare readings from accelerometers placed around the front and rear
axles. By comparing the reach of maximum forces on the rear and front axle, we can
identify, that the set speed algorithm is abusing the front axle in tighter corners, with rear
axle not seeing much action.

While the variable speed algorithm not only makes much better use of straights, but
also adds lateral potential of the rear axle into cornering. The increased use of rear axles
lateral grip not only improves performance of the rear axle, but also translates into front
axles increased potential for higher lateral acceleration.

Fig. 5.4. AccelerationGraph of Managed (Top) and Set (Bottom) speed algorithms

5.2. CLOSING WORDS

This thesis closes with mark of successful completion of key objectives aimed at
improving the testing processes for autonomous passenger cars & development of its
components. Work containing creation of a testing scenario in BeamNG.tech simulation
software, establishing an interface between the simulation suite and the autonomous op-

41

erating system, adaptation of a path-following algorithm, and research of optimisation
possibilities for a path planning algorithm.

The implemented testing scenario, demonstrated that use of complex simulated en-
vironments in evaluation of robotic systems, under diverse and challenging conditions,
concludes with multitude of useful datasets. This approach enables further identification
and resolution of design issues and performance deficits.

Successful interfacing between the simulation suite and the autonomous operating
system has been successful. The simulation provides correct, real-time representation of
scenarios imitating real world tasks. Adaptation of the path-following algorithm allowed
the system to effectively navigate the simulated environment, providing vital insights into
the systems performance and its pitfalls.

In the end, the study has identified & explored potential for optimising the path planning
algorithm. These ideations are to be studied, specified in detail & implemented in further
exploration on the subject.

Completion of these objectives has resulted in improvements in development & test-
ing processes of the Formula Student car, proving authors abilities in working with au-
tonomously operating, robotic systems.

BIBLIOGRAPHY

[1] BeamNG.gmbh, BeamNG.Tech Main Website & Introduction, https://beamng.tech/. 2023.
[2] Formula Student Germany Association, FSG:Concept, https://www.formulastudent.de/

about/concept?date=10.11.2023. 2023.
[3] Kiran Kone, Lateral and longitudinal control of an autonomous racing vehicle, https://

webthesis.biblio.polito.it/11982/1/tesi.pdf. 2019.
[4] Project Management Institute, A guide to the project management body of knowledge (PMBOK

guide), Sixth Edition wyd., PMBOK guide (Project Management Institute, Pennsylvania, USA,
2017).

[5] Racing Team of Wrocław University of Science & Technology, PWrRT - Race Car brochure,
https://web.archive.org/web/20230521144617/https://racing-pwr.pl/en/
race-car/. 2023.

[6] Wikipedia contributors, Robot — Wikipedia, the free encyclopedia, https://en.
wikipedia.org/w/index.php?title=Robot&oldid=1192261043. 2023. [Online; ac-
cessed 21-December-2023].

[7] Yastremsky, M., Rapidly-exploring Random Tree Path Planner, https://github.com/
MaxMagazin/ma_rrt_path_plan.

43

https://beamng.tech/
https://www.formulastudent.de/about/concept?date=10.11.2023
https://www.formulastudent.de/about/concept?date=10.11.2023
https://webthesis.biblio.polito.it/11982/1/tesi.pdf
https://webthesis.biblio.polito.it/11982/1/tesi.pdf
https://web.archive.org/web/20230521144617/https://racing-pwr.pl/en/race-car/
https://web.archive.org/web/20230521144617/https://racing-pwr.pl/en/race-car/
https://en.wikipedia.org/w/index.php?title=Robot&oldid=1192261043
https://en.wikipedia.org/w/index.php?title=Robot&oldid=1192261043
https://github.com/MaxMagazin/ma_rrt_path_plan
https://github.com/MaxMagazin/ma_rrt_path_plan

LIST OF FIGURES

1.1 Exemplary system design . 8
1.2 Autonomous System indicator list with colors for each status. 11
1.3 Autonomous System status flow diagram . 12

2.1 Graphics of a popular robotics environment . 17
2.2 Graphics of a state-of-the-art simulation solution 17

3.1 Interfacing architecture . 27
3.2 Network & data exchange design . 28

4.1 Delaunay Triangulation . 34
4.2 FlowChart of simplified acceleration controller . 35
4.3 FlowChart of advanced speed controller . 36

5.1 SpeedGraph of Managed (left) and Set (right) speed algorithm 39
5.2 Map of timing checkpoints . 40
5.3 Time difference graph . 40
5.4 AccelerationGraph of Managed (Top) and Set (Bottom) speed algorithms 41

44

ACRONYMS

AMU Autonomy Main Unit. , 13, 19, 20, 28, 35, 36
API Application Programming Interface. 21, 25, 26, 30
ASAP As Soon As Possible. 34

EBS Emergency Braking System. 12

LUT Lookup Table. 36

PID Proportional–Integral–Derivative Controller. 35

SLAM Simultaneous Localisation & Mapping. 34

VPU Vehicle Performance Unit. 19, 20, 35, 36

45

GLOSSARY

Acceleration (competition category) - a straight line test, driving from standstill to an N
meters away drive through point. 12

Autocross (competition category) an endurance competition, where we drive multiple
laps, as fast as possible, around a track mapped during Trackdrive. 12

Autonomy Main Unit A computer of high computational power, functioning as the brain
of autonomous driving system. 19, 35, 45

Fan Car a car which includes a ground suction system, in all current depictions created
with help of large & loud fans. . 11

Formula Student a competition conceptualized by SAE International, with a theme, where
a fictional manufacturing company contracts a student design team to develop a small
Formula-style race car. The created prototype race car is to be evaluated for its potential
as a production item in both on track and design, management and presentation aspects..
3, 11

Marshal track marshals wave the racing flags and assist crashed or broken-down vehicles
and their drivers, pit marshals watch over the procedures in the pits & carrying out
safety testing, fire marshals are responsible for handling fire events on track or in the
pit.. 11

Monocoque a chassis made of composite material.. 11

Nvidia Jetson A small packaged, integrated compute platform. Used edition sports an
8 core ARM CPU, a powerful GPU and dedicated “Jetpack” software package, for
interfacing with compute units present on-board. 13, 28

Open Wheel The wheel/tire assembly is unobstructed when viewed from the side. & no
parts altering aerodynamic behaviour are placed directly before or after the wheel. With
details presented in rule books.. 11

Pitot Tube A pitot tube measures fluid flow velocity. It is widely used to determine the
airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air,
and gases in industry. A basic pitot tube consists of a tube pointing directly into the
fluid flow. As this tube contains fluid, a pressure can be measured; the moving fluid
is brought to rest as there is no outlet to allow flow to continue. This pressure is the
stagnation pressure of the fluid, also known as total pressure or (particularly in aviation)
the "pitot pressure".. 12

46

Skidpad (competition category) a turning ability test, driving from standstill around tight
loops, to a standing finish. 12

Slip Angle The difference between set steering angle, imposed by the direction of wheel
rim and the angle of tire surface in respect to the longitudinal of wheel displacement
vector. This variable tells us about the actual change in movement angle.. 37, 38

Trackdrive (competition category) a mapping & unknown terrain driving test, where we
drive a loop around a complex track, without prior knowledge of its configuration. 2,
12, 34, 46

Unit Testing Unit testing is a software testing method, by which individual units of source
code (sets of one or more computer program modules together with associated control
data, usage procedures, and operating procedures) are tested to determine whether they
are fit for use. 17

Vehicle Performance Unit A computer responsible for optimal power distribution & grip
on tires, through torque vectoring & traction control.. 19, 35, 45

47

	Abstract
	Preposition
	Authors motivation
	Goal & Overview
	Assumptions & disclaimers

	Engineering an autonomous driving system
	The building blocks of a robotic system
	Contemplation of the problem
	Definition of robotic trinity
	Considerations in project management

	Processes Relevant to Formula Student competition
	What is the Formula Student Car?
	Important Rules & Restrictions in Roboticizing the Formula Student Car

	Compilation of acquired knowledge into a functional autonomous driving system
	Structure of an autonomously operating car
	Overview of software design for autonomous driving
	History of relevant solutions in the autonomous system

	Simulation: a representation of reality
	Benefits in starting with state-of-the-art physics & vehicle simulation
	Creation of plug-and-play interfaces between simulation & physical systems is important
	Universal interfaces & modular design improve testing workflow significantly

	Engineering software interfaces, universally compliant with BeamNG simulation & real components
	Designing the robotics system around concept of modularity
	Creation of testing scenarios in BeamNG.tech
	The platform
	The environments
	The Vehicle

	Creation of `virtual' interfaces in BeamNG.tech. Polling sensors & requesting controls.
	Architecture
	Programming
	Testing

	Extending path following algorithm with speed control
	Distilling track driving rules of Formula Student competition
	Understanding the path planning algorithm
	Speed and acceleration optimisation in trackdrive lap
	Implementation

	Summary
	Validation
	Closing words

	Bibliography
	List of Figures
	Acronyms
	Glossary

