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Abstract

Simulation based testing is the most common technique for testing autonomous vehicles
(AVs). For each test a tester needs to describe a scenario, specify test criteria, setup
a simulation, connect the artificial intelligences (AIs) under test to it, execute the test,
determine its results and collect all generated data e. g. for further analysis or training
AIs. This process is tedious and error prone. There is no well-established procedure how to
cope with or solve these problems. I present DriveBuild, a research toolkit for simulation
based testing of AVs. DriveBuild comes with an abstract scheme to describe tests and
provides a scalable client-server-architecture based on micro services. DriveBuild is able to
execute automatically generated tests and to connect AIs under test which control AVs in
a simulation. It also offers many metrics to analyze AVs and test generators. This thesis
shows that DriveBuild automates the process of setting up simulators, distributing test
runs across a cluster, frequently checking test criteria during a simulation, gathering data
and analyzing test results. So it reduces the amount of time which a tester needs to invest
into preparing, running and evaluating simulation based tests. There are already students,
courses as well as research groups that are interested in DriveBuild and use it for their
own purpose.
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1 Introduction and Motivation

The progress in developing autonomous vehicles (AVs) over the past years is impressive and the
effort taken for testing them is amazing. The Cruise program of general motors (GM) drove
over 1 million miles [1], Uber drove over 3 million miles [2] and cars of Googles Waymo project
even drove over 10 million miles autonomously on public roads. Additionally Waymo drove over
7 billion miles in simulations [3]. However, many more miles have to be driven autonomously
since the process of testing and training AVs requires AVs to drive hundreds of millions of
miles autonomously [4] to assure a high reliability on their safety. This results in an increasing
importance of simulations ([5, 6]). To simulate AVs instead of driving real AVs on public roads
allows to drive many more miles within a certain time interval, avoids accidents and injuries,
vastly reduces the costs of testing, allows to test AVs in predefined situations and enables testers
to reproduce test results and faulty behaviors, i. e. to debug AVs. The setup of simulations
and the interaction with AVs in a simulation are complex which makes simulation based testing
tedious and error prone. There is currently no well known scheme of abstractly specifying test
criteria in the context of AVs and no well known software architecture which is geared towards
simulation based testing of AVs. Furthermore there is at the moment no tool that provides an
abstract interface for testing and training AVs as well as for supporting test generation.
I present DriveBuild, a research toolkit that automates the process of setting up simulations,
executing tests on a cluster, verifying test criteria during simulation time, determining test results
and collecting training data. This automation avoids dealing manually with tedious and error
prone tasks. DriveBuild implements a unified process to test AVs and to collect training for
them which reduces the required effort for testing AVs and gathering training data. DriveBuild
provides a declarative and extensible extensible markup language (XML) based domain specific
language (DSL) to formalize test cases which allows to verify test cases and reuse test definitions.
This work does a critical discussion of the domain and presents a user study to reveal the main
requirements of the DSL. The work contains an extensive evaluation that shows the generality
and the scalability of DriveBuild. This evaluation develops a scheme to test AVs against test
generators.

The thesis is organized as follows: Section 2 introduces detailed descriptions about the problems
this work aims to solve followed by Section 3 which explains the basic concepts this work utilizes
or orients on and Section 4 which discusses current and related approaches. Section 5 raises the
applied methods and strategies, Section 6 describes the implementation in detail and Section 7
shows the capabilities of the test formalization provides, the metrics it offers, analyzes the
scalability and discusses how supportive DriveBuild is for testers.

2 Problem Statement

In this work a test case is a specification of an environment and a test setup. The environment
describes the curvatures of roads and the placements of static obstacles. The test setup describes
the initial states of vehicles and the test criteria. The resulting number of possible test cases
is too huge to create a systematic way to define test cases i. e. a formalization that allows to
describe arbitrary test cases without loosing the level of detail which is required to specify concrete
test cases. So a formalization that is supposed to define concrete test cases can only treat a
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subset of the whole test case space. Currently there is no standardized subset which specifies a
comprehensive but sufficient test suite that ensures the safety of AVs to a high degree.

Concerning a subset of test cases which explicitly target safety critical advanced driver assistance
systems (ADASs) e. g. adaptive cruise control (ACC), lane centering, emergency brake or collision
avoidance the number of possible test cases is still too large for a formalization. A simple
option is to reduce the subset to a number of certain ADASs. This reduces the generality of
the formalization and raises the problem of reasoning about which ADASs should be supported.
Another option is to subsume ADASs into groups. This raises the problem of determining shared
characteristics of ADASs that separate ADASs. Again if the number of groups is too large a
formalization can not handle all of them and if it is too low a formalization may not be able to
express all the specific details which are needed to specify concrete test cases.
Testing an ADAS is complex. Each ADAS requires certain input metrics to operate e. g. current
positions, distances or speeds of the AV to which the ADAS is attached to or of other participants.
There are no standards to define which metrics ADASs require and how they have to be tested.
Further input metrics may be properties about the AV like damage, steering angle or the state
of certain electronic components e. g. the headlight. Depending on the implementation of an
ADAS it may not require certain metrics as its input directly but other data like camera images
or light detection and ranging (LiDAR) data which further increases the variety of input metrics.
In order to test the results of ADASs even further metrics that e. g. represent a ground truth are
required. This yields the problem that a formalization has to support many different kinds of
metrics in order to provide ADASs with input metrics and to test them. The more metrics a
formalization supports the more complex it may get.

AVs under test are controlled by artificial intelligences (AIs). Concerning a subset of test cases
which evaluate the efficiency of a given AI the problem raises that the execution time of the
frequent verification of test criteria, the overhead of the underlying simulator and the discrepancy
between the hardware used for testing and the actual hardware used with a real AV falsify time
measurements. Given all the metrics which an ADAS that is attached to an AV requires a
simulation needs to exchange these possibly highly diverse metrics with the AI that controls
the AVs. Since AIs differ greatly in their implementation they can not be included in the
simulation directly and have to run separately. Additionally a tester may not want to expose
the implementation of an AI to DriveBuild. Hence AIs have to run externally i. e. not within
the internal architecture of DriveBuild. In case of an external AI the communication with
a simulation and the network latency further falsify time measurements. In case of external
AIs there is also the problem of creating a communication scheme which allows to request and
exchange lots of diverse data and which exposes mechanisms to implement interactions between
AIs and a simulation.

The more subsets a formalization has to consider and the bigger they are the higher is the
diversity of metrics as well as test criteria which are required to define test cases. This results
in the problem of an increasing complexity in the definition of test cases plus in the validation
and evaluation of test criteria. There is no standardized set of test criteria which are sufficient
for many test cases. There is also no standardized way of how to declare test criteria and how
to specify reference tests and their expected results [7]. Testing ADASs that are not explicitly
considered during the creation of the formalization may need test criteria which the formalization
does not provide. To allow an user to introduce additional criteria on the client side for the
purpose of introducing further criteria leads to the problem of distributing test criteria over
the underlying platform and the user and thus divides the corresponding responsibilities of the
verification of test criteria.
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However, any subset of test cases involves AIs which control AVs. These AIs have to be trained
before they are able to control an AV suitably. Therefore a tester wants to use training data
which is collected in the same environment that is in place to run tests for an AI. This yields the
problem of manually controlling participants in a simulation to efficiently generate training data.

In order to ensure a high degree of safety of AIs many test executions are required. In order to
execute many tests simultaneously they may be distributed over a cluster. When distributing
test runs across a cluster a common goal is high utilization of its provided resources. This leads
to the problem of finding a strategy to distribute test executions based on their predicted load
and their estimated execution time. Therefore characteristics of formalized test cases have to be
determined that deposit in the resulting load and the actual execution time.

The goals of this work are the creation of a scheme which formalizes test cases, the support
of training AIs, the specification of a life cycle for handling the execution of tests and the
actual implementation of DriveBuild. The formalization shall focus on ADASs and be able
to describe static elements (e. g. roads and obstacles), dynamic elements (e. g. participants and
their movements), test criteria and sensor data which AIs require.

3 Background

A common execution strategy for simulations is synchronous simulation. This strategy avoids
simulations to be influenced by network latency and the current load of the underlying hardware.
As a drawback this strategy does not support real-time simulations.
This strategy makes a simulation process wait frequently for AI processes which control AVs
in the simulation to reach a certain state. Only if the AI processes reach this state both the
simulation process and the AI processes continue.

Since synchronous simulation makes simulations pause frequently the real time does not correspond
to their simulated time. Further is the speed of the simulated time dependent on the current load
of the underlying hardware. To solve this the simulation time is separated from the real time by
using Ticks [8]. Ticks define logical time units [9] on which both simulations and test cases in
my work are based on. A single tick is a time interval of predefined length in which a simulator
calculates the changes to the environment plus to all traffic participants and applies them to the
simulation. A tick is the smallest considered logical time unit and can not be divided.

The three-way handshake [10] is a communication protocol that allows to establish a connection
between a client and a server on an unreliable channel. Therefore the initiating client sends a
SYN (“synchronize”) package to the server to request a connection. The server responds with a
SYN-ACK (“SYN acknowledge”) package that informs the client that the server opened a connection.
The client answers this package again with a ACK (“acknowledge”) package which confirms that
the client knows about the opened connection. This establishes a connection.
The most well-known application is transmission control protocol (TCP) which extends the
protocol with additional properties including error detection. TCP builds the basis of hypertext
transfer protocol (HTTP) requests. Nevertheless, a three-way handshake is suitable to implement
simple request mechanisms to exchange data on unreliable channels.

Micro services is an architectural design pattern which splits an application into small and
autonomous services and connects them with light weight protocols [11]. In contrast to other
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architectural design patterns like service oriented architecture (SOA) micro services introduce a
very high level of resilience, the possibility to scale services independently instead of the whole
application and easier composition of heterogeneous technologies. As a drawback micro services
increase the complexity of the development and the deployment of an application. Further it
requires more communication between its components which the application more dependent on
network latencies.

Complex objects can often not be stored or transfered over a network as they are. Serialization
is a technique to convert a complex object to a textual or binary representation and back [12].
These textual or binary representations can be stored or transfered over a network. Further
serialization may implement additional properties which allow to check whether a serialized object
is broken e. g. after transferring it over an unreliable connection.

The master slave pattern is a communication model which allows to distribute similar or
identical computations over multiple nodes and parallelize them [13]. The pattern consists of
a number of slave nodes that do the actual computations and exactly one master node that
distributes tasks among the slave nodes, organizes them and collects their results. On the one
hand this architecture is simple and introduces tolerance for faults of computations on slave
nodes. On the other hand it also introduces the master node as single point of failure. Further
this architecture does not allow direct communication between slave nodes without involving
the master node which increases the required communication in case the slave nodes need to
exchange data.

4 State of the Art

Section 2 shows that simulation based testing of AVs is a complex task and there are many
problems which have to be investigated. The following subsections explain and discuss current
approaches for solving some of these problems.

4.1 Formalization of Environments and Criteria

Concerning the definition of test environments OpenDRIVE [14] is one of most popular formats for
defining very comprehensive and very detailed environments. Many well known car manufacturers
(e. g. Audi, Bavarian Motor Works (BMW) and Daimler) and other organizations like Fraunhofer,
Technical University of Munich (TUM) and deutsches Zentrum für Luft- und Raumfahrt (DLR)
Institute of Robotics and Mechatronics use it. The format is XML based and offers declarations
for many different kinds of objects like signs, cross falls, rail roads, bridges and signals which
may even dynamically change. Especially the definition of streets and rail roads can be very
complex. Additionally these object can be enhanced with meta information. So OpenDRIVE
allows to define predecessor and successor lanes, neighbor lanes, complex junctions, parking
spaces, acceleration strips, side walks, multiple different types of markings, reference lines for
roads/junctions and rail road switches. Although OpenDRIVE has many options and capabilities
to define environment elements OpenDRIVE on its own has neither the capability to add traffic
participants nor to specify their movements nor to express any kind of test criterion.
OpenCRG [15] is a XML based format which extends OpenDRIVE. It allows to increase the
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details of the roads defined in OpenDRIVE by adding bumps and unevenness to road surfaces
using curved regular grids (CRGs). Therefore OpenCRG already includes tons of predefined
data measured on existing roads.
OpenSCENARIO [16] is a XML based scheme to add traffic participants to OpenDRIVE
scenarios and bundles them with their physical properties and their dynamic behavior. The
behavior is organized in maneuvers which are sequences of abstract actions like change lane,
brake, accelerate and adapt the distance to other participants. OpenSCENARIO is capable
to define conditions which trigger these maneuvers as soon as they are satisfied. The variety of
conditions includes time to collision (TTC), time headaway, (relative) speed, traveled distance,
speed, acceleration or reaching a certain position. Since OpenSCENARIO uses XML for the
description of the dynamic behavior it can not change during the simulation. Further maneuvers
can not do any computations throughout a simulation e. g. calculate steering angles or any other
information which the underlying simulator does not directly provide. OpenSCENARIO is not
able to define any kind of test criteria as well.
Another very popular format for declaring environments is CommonRoad [17] which focuses
solely on path planning problems. CommonRoad scenarios are only capable to define lanes,
obstacles and cars. A car can be associated with a list of states that describe its movement. Each
state consists of a logical timestamp and the current position, orientation and speed of the car.
The speed as well as the position may be not specified exactly but with an interval which allows
to formulate uncertainty of these attributes. However, since CommonRoad bundles timestamps
with positions it does not guaranty that specified movements are realistic. Hence it is needed to
check feasibility of movements separately beforehand. The definition of lanes in CommonRoad
is based on lanelets [18] which consist of two sequences of points that describe the left and the
right border of a lane. In contrast the simulator I will use in my work (See Section 5.2) describes
lanes with a sequence of road center points, the current width at each point and the number of
left and right lanes. The simulator interpolates the sequence of road center points as well as the
widths to generate a smooth curvature. As a result the simulator can visualize arbitrary lanelets
of CommonRoad scenarios with a guaranteed high accuracy. Concerning the definition of test
criteria CommonRoad is restricted to the definition of simple goal regions. If an AV reaches a
goal region the test is considered successful and it failed otherwise.
There is also a model based approach to describe scenarios [19]. In contrast to other approaches
this approach focuses on creating a description scheme that is not only comprehensive but also
human-readable and abstracts from a scenario to a logical level. A main point is the abstraction in
terms of the separation of spatial and temporal information. This separation allows the definition
of acts which describe the current situation at some point during a test. Every act defines exactly
one event which triggers a transition to another act in order to create a linear sequence of acts.
All cars in a test have multiple perception layers of different sizes which surround the car. These
perception layers define event triggers. The movements of participants are specified based on a
predefined set of maneuvers. So the description of behaviors of AVs and the relation between acts
may not be flexible enough to test a wide range of diverse ADASs.
GeoScenario [20] is a based on the OpenStreetMap (OSM) [21] standard DSL to formalize
test scenarios. The goal of this formalization is to introduce reproducibility of test cases by
enabling testers to describe complex traffic situations. Additionally the formalization focuses on
an abstraction from the underlying tools that perform tests to allow to exchange them easily. So
GeoScenario allows to reuse well known existing tools like the Java OSM editor (JOSM) [22]
with minor changes and can easily utilize existing services like Bing Maps [23] and ESRI Maps [24].
BeepBeep [25] is a formal and declarative DSL for complex event processing (CEP) queries
on event traces of vehicles. In contrast to other approaches it allows to define custom boolean
queries and does not restrict CEP on a predefined set of boolean queries. Further it allows to
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describe non boolean queries and compose them using temporal logic based expressions in an
exclusively declarative way. This strategy is very similar to the formalization which this work
develops. Additionally BeepBeep can be used for real time evaluation.

4.2 Generation of Environments

SCENIC [26] is a probabilistic DSL which is geared towards the creation of training and test
data sets for machine learning (ML) systems. Its scenarios define an environment model that
characterizes scenarios which are e. g. realistic and describe certain types of interesting input. In
contrast to other approaches SCENIC allows to specify distributions on the parameters that
define environments instead of using concrete values. Furthermore these environment models
allow a formal analysis of the properties and the correctness of a given ML system.
The scenario markup language (SML) [27] framework allows to automatically generate complex
scenarios which have static as well as dynamic elements. It is designed to author studies on
the behavior of drivers in realistic traffic simulations. Therefore a SML script declares events
(e. g. accidents) that occur to a driver under predefined conditions and behavior fractions which
group a set of commands (e. g. brake, steer and accelerate). Further it can compose these to
supervisor elements which influence a simulated scenario. Since a SML script is a XML file
the behavior elements are fixed during a simulation which comes with the same problems as
OpenSCENARIO at least to a certain extent. Additionally events trigger modifications to a
scenario during simulation time. So the SML framework requires a simulator that can change its
content during the execution of a simulation.
An approach to implement a test generator is automatic crash constructor from crash report
(AC3R) [28] which can reconstruct crashes by translating crash reports into simulations [29].
Therefore AC3R uses natural language processing (NLP) to extract information from a semi-
structured police report like provided by the national highway traffic safety administration
(NHTSA) database. The extracted information provides the geometry of the required roads as
well as the initial positions of the involved participants. To determine the trajectories that led
to the crash AC3R applies heuristics. Finally, AC3R generates a BeamNG scenario that can
simulate the crash. Additionally AC3R offers a way of measuring the accuracy of the simulation
compared to the input report and is capable to derive test cases which encode similar conditions
under which the initial crash happened. This allows testers to check whether their AI would have
had an accident under the same or similar conditions too.
Another approach is AsFault [30] which uses procedural content generation [31]. AsFault
focuses on testing lane keeping capabilities of AVs. Therefore it generates scenarios with exactly
one road which an AV has to follow to pass the test. The curvature of the road is based on
B-splines and a random number generator.
Another approach is evolutionary computation [32] which aims to generate single lane tracks with
a high diversity. The paper measures the diversity of a track in terms of its curvature and speed
profile. The more different types of curves concerning their length, their size and their angle and
the more diverse the speeds an AV can reach on different sections of the generated track the more
diverse it is considered. To achieve a high diversity the approach uses multi objective genetic
algorithms (GAs) that evolve tracks with an as high as possible variety of turns and straight as
well as driving speeds.
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4.3 Simulators

OpenDS [33] is a java based cross platform simulator which specializes to simulate AVs. It
utilizes the capabilities of the physics library JBullet [34] and therefore provides a very realistic
behavior of participants in the simulation. It bases the generation of the graphical representation
for the simulation on the JMonkeyGameEngine [35] framework and uses the lightweight java
game library (LWJGL) [36] to utilize the graphics processing unit (GPU). Further OpenDS has
the capability to generate scenarios from OpenDRIVE formalizations. However, AVs in OpenDS
lack physical properties including a detailed damage report or the behavior of the bodywork and
thus a detailed driving behavior.
Simul-A2 [37] is a Webots [38] based simulator which aims to evaluate ADASs. To increase
the realism of the simulations of Webots Simul-A2 introduces multiple agents that control and
influence AVs regardless of any action of the user. These agents use a communication scheme
which can not only implement communication with Webots but also exchange of data with
real cars. Therefore Simul-A2 uses tools and libraries of the robot operation system (ROS)
project [39]. Although the agents make the simulations more real the physical behavior of objects
does not allow highly accurate test executions.
CARLA [40] is a simulator that is geared towards to simulate urban environments especially
traffic. It comes with many assets and models including buildings, vehicles, streets and weather
conditions to create detailed urban scenarios. CARLA can only simulate vehicles and pedestrians
that are abstracted by the concept of actors which represent the complete dynamic content. It uses
a server multi-client architecture that allows to distribute the control of all actors across multiple
nodes. Further it offers interfaces to manage all simulation related aspects e. g. traffic generation,
behavior of pedestrians and vehicles, weather conditions and sensors attached to any actor. The
range of available sensors includes cameras, LiDAR, depth and global positioning system (GPS)
sensors. Additionally CARLA can create environments from OpenDRIVE descriptions and
integrates ROS.
AirSim [41] is a project of Microsoft that serves as a plugin for Unreal Engine [42] environments.
It can simulate vehicles but its focus is the simulation of drones. The goal of AirSim is to collect
annotated training data for deep learning or reinforcement learning based AIs by controlling
vehicles mostly manually. The available data includes only the state of vehicles, vision cameras
and LiDAR sensors. The generation of maps for AirSim is a complex task since it requires to
generate Unreal Engine environments.
The open racing car simulator (TORCS) [43] is geared towards developing, testing and comparing
AIs. Many papers and research oriented competitions utilize TORCS because of its high degree
of modularity of the architecture and its simple vehicle model which covers only basic properties
of vehicle components and mechanical details, a simple aerodynamic model and friction. TORCS
provides a set of multiple predefined racing tracks and does not support generating new tracks. The
implementation of AIs for TORCS is complicated and requires AIs to control cars comprehensively
e. g. to shift gears.
Siemens PLM Software developed a X-in-the-loop driving simulation platform [44] which focuses
on testing and validating ADASs. The X under test may be software, hardware or the model of
an AV or even a human driver. The platform is based on PreScan, MATLAB and Simulink
which enables it to handle real-time models of AVs and their subsystems. Further the simulation
platform provides tactile, motion, acoustic and visual feedback which enables a human to steer a
car manually in real-time.
BeamNG [45] is a simulator that uses in contrast to most other simulators a bottom up approach
to model the physics of vehicles. Therefore instead of defining the physics of vehicles directly
it specifies physics for all separate components of a vehicle e. g. tires, suspensions, differentials,
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engines, doors and glass. A model of a vehicle is a collection of these components which are linked
together with beams. So the physics of a vehicle is the result of the physics of all its components
and their connections. Hence the physics of a vehicle has a very high level of detail and its
behavior is very realistic. BeamNG includes numerous models for vehicles, textures for road
materials with different characteristics that influence the friction and weather conditions. There
is a free but limited research version of BeamNG which offers the full capacity of the physics
engine but provides only one vehicle model and only one predefined environment. BeamNGpy is
a Python interface to dynamically create environments, to control BeamNG simulations and to
request data about vehicles and from their sensors. This work uses BeamNG for all simulations.

4.4 Simulation Infrastructure and Platforms

To make a real car autonomous and to setup an environment to develop and test it is very time
consuming, error prone and expensive.
Autonomoose [46] is a research platform at the university of Waterloo which modifies a single
car to increase its level of autonomy step by step. This car is equipped with radar, sonar, LiDAR,
inertial and vision sensors as well as a powerful embedded computer. This platform subsumes
multiple research groups of multiple faculties. The current projects aim to improve the behavior
in all-weather conditions, to optimize the fuel consumption, to reduce emissions and to provide
methods to design safe and robust computer-based controls.
DeepRacer [47] is a project on the Amazon web service (AWS) platform and focuses on
reinforcement learning (RL). Therefore it provides a software environment which allows to design,
train, test and simulate RL models. The project also offers a small AV which has a camera and
is ready to accept and test trained RL models in the real world. Additionally researchers can
compete with each other researchers in a racing league which AWS hosts.
Setting up simulations and interfaces for interacting with them is a complex task and not
standardized. Existing simulators and architectural designs for simulation based testing are
typically not freely available. Nevertheless, there are platforms like Metamoto [48] that provide a
simulation infrastructure to research groups in terms of a service as a service (SaaS) to circumvent
these problems.

4.5 Comprehensive Approaches

Paracosm [49] is a project which specifies a DSL to formalize test cases plus a simulation
architecture. The DSL is a synchronous reactive programming language whose main concept are
reactive objects which bundle geometric and graphical features with the behavior over time of
physical objects in a simulation. Paracosm uses 3D meshes to represent the geometric features
of physical objects. Each reactive object defines input and output streams of data through which
objects can communicate to each other and be composed to more complex objects in a flexible way.
Hence the actual computations on or the analysis of data are equivalent to stream transformations
over objects. Paracosm provides only a small set of sensor data which includes camera and
depth images. To extend Paracosm with further types of sensor data it has to be extended
using the underlying application program interface (API). Paracosm can also generate random
test cases automatically. However, Paracosm does not provide any constructs for specifying test
criteria. Additionally the internal representation is not compatible with any other well known
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simulator than the one Paracosm comes with. This shipped simulator lacks a precise reflection
of physical behaviors in comparison to other simulators. The paper which presents Paracosm
is not clear about how AIs communicate with a simulator and there is no information about
any performance measures. The paper is also not clear about whether simulator instances can
run in parallel or whether the processes of the architecture can be distributed among multiple
computers.
The open source project Apollo [50] is a comprehensive platform which specifies a high perfor-
mance and flexible architecture for the complete life cycle of developing, testing and deploying AVs.
It ships with software components to localize traffic participants, to percept the environment and
to plan routes plus it supports many types of sensors e. g. LiDAR sensors, cameras, radars and
ultrasonic sensors. Additionally Apollo comes with a cloud service and offers a web application
which visualizes the current output of relevant modules, shows the status of hardware components,
offers debugging tools, activates or disables modules during a simulation and allows to control
AVs manually. However Apollo does not provide test case criteria which consider complete
scenarios or multiple traffic participants at once e. g. distance between participants.
Autoware [51, 52, 53] is another comprehensive open source project. Similar to Apollo it
builds a complete ecosystem which implements algorithms for localization, perception, detection,
prediction and planning, ships with predefined maps and has the capability to handle actual
hardware including sensors and vehicles. It comes with the LG Silicon Valley Lab (LGSVL)
simulator that can visualize information like perception data or status of other participants.
Autoware works with ROS bag (ROSBAG) files [54] which allow to record, replay and debug
executed simulations. The integration of ROSBAG requires Autoware to describe environments
with pixel clouds. Hence in order to work with Autoware a tester has to invest lots of time
to create comprehensive pixel clouds. Furthermore a test has to rely on the shipped perception
algorithm since this is the only source of information about the environment for every component.

4.6 Implementation of AIs

To determine requirements of AIs that control AVs in simulations this work considers multiple
common approaches to implement AIs. The two major paradigms to implement AIs are mediated
perception and behavior reflex. Mediated perception relies on camera images and tries to identify
and classify objects as lanes, other participants, obstacles, etc. Based on the extracted information
an AI computes control commands for an AV. Behavior reflex relies on camera images as well but
instead of extracting information from an image it directly maps the whole image to a driving
action using a regressor like a convolutional neural network (CNN).
DARPA autonomous vehicle (DAVE) [55] is a behavior reflex approach and relies on images of
a single front camera. It uses a CNN to compute steering commands directly from given input
images. This CNN uses camera images which are mapped to human steering angles as its training
data. It learns to detect useful road features on its own and does not include any preprocessing
steps for the camera images. The paper claims that this approach eventually leads to better
performance and smaller systems because the internal components self-optimize.
Another approach for implementing an AI is DeepDriving [56]. DeepDriving is a direct
perception approach which lies in between mediated perception and behavior reflex approaches.
Unlike mediated perception it does not extract as much information as possible but uses only
a small number of key perception indicators from an input image and estimates an affordance
value of the situation at which the image was taken. The indicators include distances to lane
markings and preceding participants. To extract the key perception indicators the approach uses
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deep CNNs which are trained by manually driving an AV for a few hours. The paper claims that
the set of key perception indicators is sufficient to completely describe scenes and to base driving
decisions on it.
Another approach is deep RL [57]. This approach aims to train a neural network model that
focuses solely on the lane keeping problem. Therefore it translates the problem of training a
neural network into a problem of solving Markov decision problems (MDPs). The input of the
neural network are single monocular images and the distance the AV traveled safely defines
the reward for the neural network. The approach determines the traveled distance by feature
extraction of the input image. The paper claims that it uses a continues and model-free algorithm
which can perform all exploration and optimizations on the AV while it drives. Further it claims
that an AV learns to follow a lane with only a few steps of training.
Scale AI [58] is a company which offers training data for AVs to companies including Samsung,
Toyota and lyft. It offers data as images and videos. The types of available data are LiDAR
sensors, radar, point clouds, traffic lights plus annotated and labeled data. The data can be
requested via a representational state transfer (REST) API. This API also offers ML based
methods to label and annotate custom images and videos.

5 Methodology

This section describes all strategies and concepts DriveBuild follows to formalize test cases and
to implement a test life cycle. It also explains the cycle of the runtime verification process and
the underlying strategies concerning the communication between the components of DriveBuild
and the communication between DriveBuild and clients.

5.1 Test Case Formalization

The test case formalization specifies a test environment, the behavior of participants, the test
criteria and the data which either AVs under test require or which has to be collected e. g. for
training data. Since there are many different kinds of ADASs which simulation based testing can
validate the formalization concentrates on a subset of ADASs. To determine a subset of ADASs
which implement essential functionality of AVs and are safety critical I read many recent papers
that discuss ADASs. Table 1 lists the targeted ADASs and groups them by their function. Hence
ADASs in same the group presumably share the same minimum set of metrics which they require
to operate. For each group Table 2 identifies which basic metrics they require. It reveals that
some groups of ADASs require more metrics like Group 2 and others require only a few metrics
like Group 3. All considered metrics result from the basic data types position of AV, position
of lane markings and speed. To test an AV which integrates ADASs of these groups the AV
requires the appropriate metrics either directly or in the form of other data types e. g. camera or
LiDAR images which the underlying AI uses to extract the required metrics itself. Hence it is not
sufficient for the formalization to provide only metrics which ADASs require directly but also to
provide other common data types.
The formalization in this work describes test cases declaratively which avoids any need to compile
or interpret the formalized test case. Further the formalization is based on XML which allows
to define a XML schema definition (XSD) which can validate a test case to make sure that it is
specified properly before it is processed. Additionally XML has great support in many languages
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Table 1: Target ADASs — Lists all ADASs that the formalization aims to support. The ADASs
are grouped based on their functionality and thus by the metrics they require to work.

Group Supported ADASs Description

1

Collision avoidance system
Forward Collision Warning
Emergency Brake Assist
Intersection assistant
Turning assistant

Systems that avoid or reduce the severity of colli-
sions or at least warn a driver about them

2

Intelligent speed adaptation
Cruise control
Adaptive cruise control
Active Brake Assist

Systems that control the speed of an AV or keep
a safe distance to other participants

3

Lane centering
Lane departure warning system
Lane change assistance
Wrong-way driving warning

Systems that observe the relative position of an
AV on a lane or determine the direction of a lane.

Table 2: Minimum required metrics — Lists the minimal set of metrics which ADASs in the same
group (see Table 1) presumably require.

Type of data Group 1 Group 2 Group 3
Distance to other traffic participants X X 5
Distance to lane markings and road edges 5 5 X
Angle of AV to the road 5 X 5
Speed X X 5
Relative speed to other traffic participants X X X
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Figure 1: Environment coordinate system — Visualizes the theoretical view on an environment.
For purpose of illustration the underlying grid shows squares which group 5 by 5 cells where each
cell has an edge length of 1 m. This grid is not visible during a simulation.

and is well-known for decades. The formalization follows a modular approach in that separates
the DriveBuild environments (DBEs) which describe the static environments from DriveBuild
criteria (DBCs) which describe participants and the test criteria. This separation allows to reuse
environments throughout multiple scenarios and avoids duplication of possible very complex
environments.

5.1.1 Formalization of Environments

An environment is a two dimensional world. The coordinate system defines positions with a x- and
y-axis which have the unit meters and specifies rotation in anti clockwise manner starting with 0°
pointing in positive x direction as shown in Figure 1. This representation sticks to commonly
used mathematical representations and thus avoids additional translations between models and
the formalization. A DBE specifies environment elements i. e. roads and obstacles. A road has
a course, a number of left and right lanes and optionally has road markings and a name. The
course is a sequence of tuples where each tuple contains a road center point and the current width
of the road at that point. This representation allows to easily calculate the distance of an AV
to the road center and to determine the direction of lanes. The number of left and right lanes
influences the types of road markings in case a road has markings. Right lanes go in the same
direction as the sequence of the road center points. Left lanes go in the opposite direction. In
order to define basic static surroundings like buildings the formalization allows obstacles of type
cube, cylinder, cone and bump. Obstacles can not be moved by participants, do not deform and
are unbreakable. Figure 2 depicts simple examples of generated environment elements.
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Figure 2: Visualization of example environment elements — Shows generated static environment
elements including two roads and multiple obstacles. For purpose of illustration the underlying
grid shows squares which group 5 by 5 cells where each cell has an edge length of 1 m. This grid
is not visible during a simulation. Listings 4 and 6 in the appendix show the declarations to
generate these environment elements.
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Figure 3: Nesting of a criterion — Shows the allowed nesting structure for SCs, VCs and
connectives to define a criterion. Italic types are abstract.

5.1.2 Formalization of Criteria

The test criteria divide in precondition, success and fail criteria. Typically a test is considered as
successful if it ends without triggering the fail criterion. In the context of testing AVs this may
not be always true since the tests are very complex and there are cases where an AV does not
succeed but a tester does not want the test to be marked as failed. A very common example is a
test like “The AV is successful if it reaches a certain position and fails if it takes any damage or
goes off-road”. If the AV under test does not move at all it does not pass the test. That the AV
does currently not move does not imply that is not going to move at some point in the future.
Hence it can not be concluded that the test failed. To describe such results DriveBuild uses
a three-valued logics. The most basic one is the Kleene and Priest logics [59] which declares
besides true and false also the value unknown. Since the third value unknown is neutral to all
connectives it can express that a criterion could not be determined or is currently not considered
without influencing the outcome of the overall criterion. The definition of test criteria follows the
concept of temporal logic and thus defines state conditions (SCs), validation constraints (VCs)
and connectives (and, or and not) which can be nested as Figure 3 visualizes. SCs as well as VCs
evaluate the current state of the simulation or an AV and determine whether it fulfills a certain
condition. SCs yield in case the criterion can be evaluated either true or false. Otherwise it
returns unknown. VCs restrict whether the inner criterion has to be considered in the evaluation
of the parent criterion. If the condition of the VC is true the inner criterion is evaluated and the
VC returns its result. Otherwise the VC returns unknown. The introduction of VCs allows to
evaluate different criteria under different circumstances. This allows to enable or disable criteria
under certain circumstances. E. g. define a fail criterion like “While AV A drives on road R it
must not exceed a speed limit of S”. In this case the speed of A should only be evaluated as
long as A drives on R and return ideally either true or false. If A is not on R unknown shall
be returned to ignore the criterion. Another use case for VCs may be to define that an AV is
allowed to leave the road as long as it is in a certain area e. g. to avoid an obstacle or another
participant that blocks the road in this area. Table 3 lists all supported kinds of criteria and
whether they can be used as VC or SC. Listing 8 in the appendix shows example definitions for
all of them. Using the mechanism which Section 5.3 explains a tester can introduce additional
client side criteria.
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Table 3: Test criteria — Lists all supported test criteria, describes their purpose and characterizes
whether these can be used for VCs or SCs.

Type Description VC SC
position Checks whether an AV is at a certain position or within a certain

radius of it
X X

area Checks whether an AV is within a certain area X X
lane Checks whether an AV drives on a certain lane or off-road X X
speed Checks whether the speed of an AV is below a given velocity X X
damage Checks whether an AVs is damaged X X
time Checks whether the simulation is currently within a certain interval of

ticks
X 5

distance Checks whether the distance between two AVs or between an AV and
the center of the lane driving on is smaller than a given distance

X X

TTC Checks whether the time to collision (TTC) of an AV and another
participant or obstacle is smaller than a given value

X 5

5.1.3 Formalization of Participants

The declaration of a participant specifies always a car model and an initial state. The chosen
model fixes the shape and the physics of the participant. The set of available models is a predefined
set which comes with BeamNG. The initial state specifies the initial position and the initial
orientation of a participant. If a participant is an AV the underlying AI and its ADASs require
data to operate. The formalization allows to declaratively specify this data which a simulation
has to collect and provide.
Resulting from the metrics which ADASs require in Table 2 and the available test criteria in
Table 3 I determined multiple types of request data (see Table 4) which a formalization can
declare and which a simulation can provide. It also shows which of the request data can be
considered as sensor data and thus marks on which request data an AI should rely in order to be
realistic. The other types of request data can be used to collect training data, to compare the
computed results of an AI to a ground truth or to implement additional client side criteria before
or after the computations which an AI does.
In case the participant is not autonomous the declaration may specify a movement. A movement
is a sequence of waypoints which a participant has to follow. A waypoint is a position at which
the behavior of a participant may change. It also has a tolerance value which avoids that a
participant has to precisely reach a position and allows to pass by in a certain distance. A
waypoint optionally defines a speed limit or a target speed which a participant has to obey until
it reaches the next waypoint that specifies another value for them. Both the initial state and all
waypoints have an attribute which specifying the current movement mode of a participant. The
movement mode is one of MANUAL, AUTONOMOUS and TRAINING. If the current movement mode
of a participant is MANUAL the car heads straight to the next waypoint and the target speed as
well as the speed limit apply. If the movement mode is AUTONOMOUS the simulation requests the
AI that registered for controlling the AV frequently and provides it with data. If the movement
mode is set to TRAINING the AV acts the same way it does in MANUAL but the simulation requests
the connected AI like in AUTONOMOUS. In contrast to AUTONOMOUS the AI can not control the AV.
However, the AI can still control the simulation. This mode is geared towards collecting training
data for AIs. The strategy to allow to change movement modes at each waypoint enables to mix
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Table 4: Available request data — Lists all types of request data which an AI that registered at a
simulation can possibly request and whether it can be considered as sensor data.

Type Description Sensor Data
position Absolute position of an AV 5
speed Absolute speed of an AV X
steering angle Current steering angle of the steering wheel X
LiDAR Distance data provided by a LiDAR sensor X
camera Camera images either colored, annotated or with

depth information
X

damage Detects whether an AV is damaged X
distance to road center Distance to the center of the nearest road 5
heading angle Angle between the orientation of a participant and

the center of the nearest road
5

bounding box The bounding box of a participant 5
road edges Sequences of points for the right and left edge of a

road
5

sections where a participant is forced to follow a path, where an AI has to control it or where
to collect data. Listings 5 and 7 in the appendix show example definitions of participants as
well as example declarations of many request data. Figure 4 shows the corresponding graphical
representation of the participant and its movement.

5.2 Test Life Cycle

Figure 5 shows all phases of the test life cycle and groups them into the four main steps input
validation, extraction, transformation and execution.
The input validation checks whether the test case is broken or malformed and validates it against

the XSD which enforces the structure of the formalized test case. If the test case is valid the
process extracts the environment description, the test criteria and the participants. It passes the
information about roads, obstacles and participants in the environment to the generator which
creates representations that are compatible with the underlying simulator. The representation of
the movements of the participants are passed directly to BeamNG which applies them sequentially
to the appropriate participants as soon as the simulation started. The transformation step creates
Kleene and Priest logics expressions which represent the defined test criteria. The verification
process uses these expressions to verify the criteria during the simulation. Then BeamNG starts
the execution of the test and sets up the runtime verification process (see Section 5.3). As soon
as the runtime verification is able to determine whether the test succeeded or failed it stops the
simulation and returns its test result.

5.3 Runtime Verification

The runtime verification cycle applies synchronous simulation (see Section 3) and Figure 6 depicts
its five phases. The first phase checks whether the current state of the simulation yields a test
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Figure 4: Visualization of example participants — Shows participants and their movements
generated from the declarations in Listing 5 in the appendix. The green line marks the parts of
a path where a participant is in MANUAL mode and has to follow the waypoints. The red stripe
marks the area an AV in AUTONOMOUS mode is expected to follow but not forced to. In this case
the participants do not change their movement mode during the simulation.

Test Input Validation
Environment

Participants Movements

Criteria Transformation

Generation

Simulation

Verification Results

Figure 5: Test life cycle — Visualizes the four main steps of processing a formalized test. The
input validation step is blue, the extraction step is magenta, the transformation step is cyan and
the execution step is red.

Verify
criteria

Request
AIs Control Step Pause

Figure 6: Runtime verification cycle — Depicts the main phases which implement the runtime
verification and applies the synchronous simulation.
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Figure 7: Test result decision tree — Visualizes the structure of the decision tree which determines
the current test result. Underlined nodes are leaves and represent test results. The inner nodes
represent the criteria of the test. Arrows describe the transitions from node to node which
depends on whether a criterion evaluated to true , false or unknown .

result. Therefore it uses a decision tree where the leaves represent test results and the inner
nodes represent the evaluation of the precondition, the fail and the success criterion. The inner
nodes work with lazy evaluation and Figure 7 shows the complete tree. If the decision tree yields
either SKIPPED, FAILED or SUCCEEDED the simulation stops and returns the current test result
as final test result. In this case all AIs which are registered at the simulation are notified about
the end of the simulation as well. If the current test result is UNKNOWN the runtime verification
cycle continues with the next phase. The second phase implements the exchange of data with
AIs. Therefore it updates all data of any sensor and all properties of any participant which were
declared in the DBC or are required to evaluate the test criteria. The phase also searches for all
AVs that are in movement mode AUTONOMOUS or TRAINING, notifies the AIs which registered for
these AVs about the availability of new data and waits for them to send commands which control
the AVs or the simulation. Figure 8 depicts the three-way protocol which the communication uses.
The first message registers an AI at a certain simulation for a certain AV and blocks until the
simulation notifies it about new data. Its response contains the current state of the simulation
which is either RUNNING, FINISHED, CANCELED or TIMEOUT. The state of the simulation may be
UNKNOWN which is only the case if the simulation could not be found. These states allow an AI
to determine whether a simulation exists and whether it still runs or already stopped. They
also allow to determine the reason why the simulation stopped. If the state of the simulation
is RUNNING the AI requests sensor data or properties of its associated AV for which it needs to
calculate control commands. A control command for an AV is a tuple which contains values for
acceleration, brake intensity and steering angle. A command to control a simulation contains
only the test result which has to be enforced. The opportunity to control a simulation allows an
AI to eventually stop the simulation after the evaluation of client side criteria.
The control phase applies the commands which the AIs sent. In case one of them enforces a
test result the simulation stops. Otherwise the phase applies all control commands of the AIs
to their associated AV the runtime verification continues with the next phase. In this phase
BeamNG calculates the changes to the simulation for the next number of ticks as defined by the
AI frequency, applies them and pauses the simulation again. Then the runtime verification cycle
starts from the beginning.

5.4 Cluster Architecture

The architecture of DriveBuild uses a master slave model. The slave components are simulation
nodes (SimNodes) that manage running simulations and runtime verification processes. The
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Figure 8: Communication between a simulation and an AI — Visualizes the messages of the
three-way protocol sent for exchanging data between a simulation and an AI.

master component is the main application (MainApp). It organizes all SimNodes and offers the
entry point for all clients and AIs.
Figure 9 depicts all logical components of DriveBuild, their data flow and how they are grouped
to modules that can be distributed over a cluster. The architecture considers three different
types of clients i. e. testers who execute tests, AIs that control AVs in simulations and researchers
who access collected data. A tester submits test cases to the test case manager (TCManager)
which selects a SimNode based on the load distribution strategy. For load distribution the
TCManager selects the SimNode where currently the least number of simulations run and
passes each test to a new simulation controller (SimController) instance at that SimNode.
The SimController creates and manages the BeamNG instance which executes the test and
starts a runtime verification process that Section 5.3 describes in more detail. It also provides
methods to request and monitor the current state of a test execution to the TCManager.
The SimController passes the test to the Transformer which checks its validity, extracts
static and dynamic information about the environment and the participants and generates a
semantic representation. The Transformer also creates temporal logic expressions from the
defined criteria such that these can be easily evaluated during the simulation by providing
only the current state of the simulation as input. The SimController uses the semantic
representation to generate a BeamNG scenario and executes it. When a simulation ends the
SimController stores the initial DBE and DBC along with its test result and other statistics
which the evaluation needs in the database (see Section 7). The Communicator handles the
exchange of messages between a SimController and AIs during a simulation and allows to
collect training data. Therefore it uses the protocol which Figure 8 visualizes. The statistics
manager (StatsManager) grants access to the data which SimControllers store in the
database and thus enables researchers to investigate and analyze collected data about test cases,
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Figure 9: Cluster architecture — Visualizes all logical components of DriveBuild and the data
flow between them. It also groups the components into the modules client , MainApp , DBMS
and SimNode .
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Figure 10: Distribution of modules over a cluster — Visualizes how the modules of DriveBuild
(see Figure 9) distribute over multiple nodes in a cluster and how they communicate with each
other and the client.

their executions and their test results.
Figure 10 visualizes how the modules of DriveBuild distribute over a cluster and how they
communicate with each other and the client. A client uploads formalized test cases to the
MainApp which distributes the test cases amongst a number of registered SimNodes. Further a
client starts instances of AIs which also connect to the MainApp in order to interact with the
AVs which the uploaded test cases declare. Conceptually, the MainApp as well as the SimNodes
exchange data with the database and may run in virtual machines (VMs).

6 Implementation

6.1 Used Tools, Frameworks and Libraries

Table 11 lists all tools, frameworks and libraries DriveBuild uses, characterizes them by whether
the MainApp, a SimNode or a client implementation requires them and shows whether they are
just a dependency of another element. This section describes the most essential tools, frameworks
and libraries in detail and why they were chosen.
BeamNG [45] is a racing game that is free to use for research purposes. It comes with a highly
accurate physics engine and thus it is interesting for research as well. Most simulators have a top
down approach where the physics of a vehicle are specified as a whole and the properties and
behavior of all components of the car derive from it. In contrast BeamNG uses a bottom up
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approach where each tire, car suspension, the chassis, the engine, every cross beam, etc. has its
own physics. A vehicle is a collection of these components which are connected by beams and
thus the physics the vehicle results from the physics of its components.
BeamNGpy [60] is a Python interface for BeamNG. It allows to programmatically create
scenarios, attach many kinds of sensors to vehicles, collect data and handle simulations and
participants during simulations. BeamNGpy can also access the pixel perfect annotation mode in
which a camera returns images that mark on the image where buildings, roads, other participants
etc. are. This can be used to gather training data for AIs. Since BeamNGpy is not able to
handle parallel requests to the same BeamNG instance DriveBuild wraps BeamNGpy and
introduces locks to implement basic thread safety.
dill is a library which can serialize Python objects and extends the capabilities of the pickle
module that ships with Python. SimNodes have to serialize parameters when a process starts a
new thread e. g. start a new BeamNG instance and requires arguments.
Flask [61] is a framework to create micro service based webservices. It is well known, reliable
and uses annotations to map addresses with functions and parameters which makes it easy to use.
lxml [62] is a library for handling hypertext markup language (HTML) and XML files. It
provides methods to parse and validate XML files against XSDs and to traverse them with XPath
expressions. lxml is basically just a Python interface to the well known, reliable and very fast C
libraries libxml2 [63] and libxslt [64].
Protocol buffers (ProtoBuf) [65] is a tool to specify and handle messages in a more type safe way
than basic byte streams offer. Therefore it provides a language to define the structure of messages
and the data types of their attributes. ProtoBuf is able to cross compile these definitions to
appropriate representations in a set of well known programming languages including Python,
Java, C++ and Haskell. The compilation process introduces additional methods to serialize and
parse messages and to check the existence of attributes in messages.
WinPython [66] is a Python distribution that ships with a set of Python packages for which the
installation on Windows is complex or error prone. This includes especially packages like SciPy
which DriveBuild requires.

6.2 Communication

Both the content of HTTP requests as well as of socket messages is serialized byte data which
represents ProtoBuf messages (PMessages). The communication uses the generated serializa-
tion methods of ProtoBuf to convert PMessages from and to byte data. Figure 11 lists all
simple and Figure 12 visualizes all complex PMessages which the communication can handle as
well as their structure. PMessages are considered as complex if they have at least one attribute
whose type is either another PMessage, an enum or an exclusive group of attributes (oneof).
An oneof group is not a PMessage on its own but logically the superclass of multiple other
PMessages. PMessages can only be properly instantiated from top level PMessages. Each
message on the socket level is a sequence of two sub-messages as shown in Figure 13. The content
length sub-message has a fixed length and sends the number of bytes that the actual content has.
The actual content sub-message is a PMessage which contains the serialized content. This way
the receiver knows the length of both sub-messages and thus can determine whether it already
got the complete message or it has to wait for more bytes to receive. An action request is a
sequence of socket messages which implements a function call over a socket. Figure 14 visualizes
the sequence of socket messages. The first socket message sends an action that specifies which
function has to be called. The second socket message defines the number of arguments N which
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VehicleID
+ vid: string

VehicleIDs
+ vids: repeated string

DataRequest
+ request_ids: repeated string

VerificationResult
+
+
+

precondition: string
failure: string
success: string

SimulationIDs
+ sids: repeated string

Num
+ num: int

User
+
+

username: string
password: string

Bool
+ value: bool

Figure 11: Simple PMessages — Shows all basic PMessages which do neither contain nor are
nested in other PMessages. It also lists their attributes with the appropriate type.

the sender passes to the function. The next N socket messages are PMessages which contain
the actual arguments.

6.3 MainApp

The MainApp is the central component of DriveBuild and offers an interface to all types
of clients (see Figure 9), manages SimNodes and distributes tests across them. The interface
for clients is a micro service [67] based webserver and Table 5 lists all its services. The use of
micro services hides and strictly separates functionality plus it allows finer granularity than other
architectures like SOA. From a testers perspective there is only the service /runTests which
submits new tests to DriveBuild and starts them. The tests have to be compressed into a zip
file. This call blocks until DriveBuild created all the resulting scenarios and started simulator
instances which run all of them. The response of this request maps the names of the submitted
tests to the generated SimulationIDs. A tester requires this information to map VehicleIDs
that tests declare to SimulationIDs and start the corresponding AIs. The interface for AIs offers
all micro services which they require to implement their interaction with the simulations (see
Figure 8). A call to /ai/waitForSimulatorRequest registers an AI for controlling a certain AV
in a certain simulation. This request blocks until either the simulation requests the registered AI
or it finishes. The response contains the current state of the simulation to which this AI registered
to which allows to determine whether the AI has to continue or to stop. If an AI continues it needs
data for its computations. A request to /ai/requestData retrieves the data of sensors which are
attached to a participant or current values of properties of a participant like the current position
or damage. This data also allows to implement additional client side checks. /ai/control enables
an AI to control AVs and simulations. The returned message contains a status message which
may be used for logging. The interface of the MainApp offers also micro services for researchers
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DataResponse
+ data: map<string, Data>

Data
- data: oneof

<<abstract>>

oneof
+
+
+
+
+
+
+
+
+

position: Position
speed: Speed
angle: SteeringAngle
lidar: Lidar
camera: Camera
damage: Damage
lane_center_distance: LaneCenterDistance
car_to_lane_angle: CarToLaneAngle
error: Error

Position
+
+

x: double
y: double

Speed
+ speed: double

SteeringAngle
+ angle: double

Lidar
+ points: repeated double

Camera
+
+
+

color: bytes
annotated: bytes
depth: bytes

Damage
+ is_damaged: bool

LaneCenterDistance
+
+

lane_id: string
distance: float

CarToLaneAngle
+
+

lane_id: string
angle: float

BoundingBox
+ points: repeated float

Error
+ message: string

Control
- command: oneof

<<abstract>>

oneof
+
+

avCommand: AvCommand
simCommand: SimCommand

AvCommand
+
+
+

accelerate: double
steer: double
brake: double

SimCommand
+ command: Command

<<enum>>

Command
SUCCEED
FAIL
CANCEL

TestResult
+ result: Result

<<enum>>

Result
SUCCEEDED
FAILED
SKIPPED
UNKNOWN

SimStateResponse
+ state: SimState

<<enum>>

SimState
RUNNING
FINISHED
CANCELED
TIMEOUT
UNKNOWN

SubmissionResult
- may_submissions: oneof

<<abstract>>

oneof
+
+

message: Void
result: Submissions

Submissions
+ submissions: map<string, SimulationID>

SimulationID
+ sid: string

Void
+ message: string

Figure 12: Complex PMessages — Shows the composition structure of the complex PMessages
that DriveBuild can handle. Private attributes denote the existence and the name of exclusive
groups of attributes (oneof).
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:A :B

Wait for complete sub-messages
content length

content

Figure 13: Socket message — Shows the sequence of sub-messages that form a complete message.
This diagram assumes that A sends a message and B waits for receiving it.

:A :B

Wait for complete message

action
number of params N

parameters 1 to N

Wait for complete message

result

Figure 14: Action request — Shows the socket messages that a component A exchanges with
component B if A requests an action that B provides. Each of these messages consists of
sub-messages as described in Figure 13.
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Table 5: MainApp micro services — Lists the micro services which the MainApp provides, a
short description, the required parameters and the return type in case a request is successful. All
parameters have to be appended to an URL as GET parameters except for underlined parameters
which have to be sent as the content of a POST request. Italic entries add notes about parameters.

URL Parameters (name: type) Return Type

/runTests user: User
zip byte data SubmissionResult

/ai/waitForSimulatorRequest sid: SimulationID
vid: VehicleID SimStateResponse

/ai/requestData
sid: SimulationID
vid: VehicleID
request: DataRequest

DataResponse

/ai/control
sid: SimulationID
vid: VehicleID
Control

Void

/stats/getRunningSids user: User SubmissionResult

/stats/<action>
At least:
sid: SimulationID
Maybe further parameters

Depends on action

/sim/stop sim: SimulationID
result: TestResult Void
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to collect and analyze test data. So the micro service /stats/<action> provides an interface
to query the database about currently running as well as previous tests. Calls to this service
require a SimulationID as a parameter and possibly further parameters which are specific to
the concrete action. The action result returns the test result of a simulation if any. A request
with the action status returns the state of the simulation like RUNNING, FINISHED or TIMEOUT.
The trace of all data that a simulation collected can be retrieved by calling /stats/trace. If
a call specifies the optional parameter VehicleID the response contains only the collected data
of the specified participant. The request /sim/stop forces simulations to end and can be called
from a tester as well as from an AI. This call requires a SimulationID and a parameter which
defines the test result to set. The result of this call contains a message which can be used
for logging. For debugging purposes of DriveBuild the MainApp further offers the request
/stats/getRunningSids which returns all IDs of simulations which a given user currently runs
on any SimNode.
The interface for SimNodes is on the socket level and Section 6.4 describes it in detail. Besides
the actual interface the MainApp opens a port which SimNodes use to register themselves at
the MainApp. When a new SimNode connects the MainApp generates an unique ID, associates
the incoming socket connection with it and returns the ID to the newly registered SimNode.

6.4 SimNode

SimNodes generate BeamNG scenarios and run the actual test executions which include the
simulations, the runtime verification, the interaction with AIs and the collection of data. The
communication between SimNodes and the MainApp is based on low level socket communication.
Therefore the SimControllers of the SimNodes offer the interface that Table 6 lists which
enables the MainApp to manage simulations and to organize the interaction between on the one
hand simulations and on the other hand testers and AIs. To use the interface the MainApp has to
make action requests. The interface has many similarities to the micro services which the MainApp
offers to clients since many of the micro services are only redirections of requests to appropriate
SimControllers. This is the case for the actions runTests, waitForSimulatorRequest,
control, requestData and stop. The action runningTests searches for all SimulationIDs
of simulations which a given user currently runs on any SimNode and returns a map which
associates test names with its SimulationID. A call to the action requestSocket makes the
requested SimController open an additional socket which registers itself to the MainApp.
The MainApp uses this socket to open a socket for each AI in each currently running simulation.
Since a SimController runs multiple BeamNG instances the corresponding runtime verification
processes have to run simultaneously as well. Further a SimController has to share references
to all BeamNG instances with the corresponding runtime verification processes. The exchange
of data between processes in Python is based on serialization and results in deep copies of
Python objects. Since BeamNG and BeamNGpy use internally lots of sockets and Python is
intentionally not able to serialize sockets neither BeamNG nor BeamNGpy instances can be
easily shared. So each SimController offers a second interface (see Table 7) which runtime
verification processes use to interact with BeamNG instances and to evaluate criteria which
require the current state of a simulation. A request with the action vids returns the IDs of all
participants in a given simulation. The action request isRunning determines whether a specific
simulation runs. The action pollSensors updates the cached data which AIs can request about
a simulation, the properties of any participant and their sensors. The action request verify
evaluates the test criteria based on the currently cached data and returns the evaluation result
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Table 6: Interface to MainApp — Describes the interface to which the MainApp sends action
requests to access the functions of the SimController of a SimNode. Figure 14 describes the
structure of action requests.

Action Parameter Types Return Type

runTests User
zip byte data SubmissionResult

waitForSimulatorRequest SimulationID
VehicleID SimStateResponse

control
SimulationID
VehicleID
Control

Void

requestData
SimulationID
VehicleID
DataRequest

DataResponse

stop SimulationID
TestResult Void

runningTests User SubmissionResult
requestSocket — Void

Table 7: Interface to runtime verification processes — Describes the interface that a runtime
verification uses to interact with simulations using action requests. Figure 14 describes the
structure of action requests.

Action Parameter Types Return Type
vids SimulationID VehicleIDs
isRunning SimulationID Bool
pollSensors SimulationID Void
verify SimulationID VerificationResult

requestAiFor SimulationID
VehicleID Void

steps SimulationID
Num Void

stop SimulationID
TestResult Void
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:Runtime Verification :SimController

vids
VehicleIDs

verify

VerificationResult
pollSensors

Void

requestAiFor

Void

For each AVFor each AV

Wait for control commands

Apply control commands
steps

Void

Loop cycleLoop cycle While simulation running

Figure 15: Runtime verification calls — Structures the calls of the runtime verification to the
SimController. It uses the interface which Table 7 lists.

of the precondition, the success and the failure criteria. A call to requestAiFor notifies all
registered AIs about newly available data. This call blocks until for all AVs an AI registered with
the action waitForSimulatorRequest. If so all the calls to waitForSimulatorRequest continue.
The action request steps makes a simulation continue for the given amount of ticks. How much
progress a simulation makes depends on the values steps per second which defines into how
many ticks a second in the simulation time is divided and the AI frequency which specifies after
how many ticks of simulation another cycle in the runtime verification starts.
Figure 15 depicts the sequence of calls that implements the cycle. The only call before the first
cycle starts requests the IDs of all participants in the simulation. The first call within the cycle
evaluates the test criteria and applies the decision tree in Figure 7 to determine the current test
result. If the test result is something else than UNKNOWN it stops the simulation and notifies all
registered AIs about it. Otherwise the cycle continues. In this case the runtime verification
retrieves the current states and the sensor data of all AVs and updates the cached data which is
available for AIs. The next calls notify all AIs which control AVs that are either in the movement
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mode AUTONOMOUS or TRAINING with requestAiFor about new data and waits for the AIs to
send control commands. Therefore the runtime verification starts a separate process that waits
until the SimController got all control commands of all AIs from the MainApp. The runtime
verification first applies commands that control the simulation. If these stop the simulation the
runtime verification notifies all registered AIs about it and exits. Otherwise it applies the control
commands which control AVs and calls step which makes the simulation continue for a few ticks.
Then the loop starts over again.
To implement the interaction between an AI and a simulation on the client side the implementation
of the AI has to follow the scheme that Figure 16 shows. The interaction uses the same PMessages
as the low level socket communication uses (see Section 6.2). Listing 1 shows examples of how to
create and read the most important PMessages which the client requires. The first call submits
formalized test cases to DriveBuild and returns a map from the declared test names to the
assigned SimulationIDs. The client starts for each participant in each simulation a separate
process which interacts with the participant. This process repeats a certain sequence of calls as
long as the simulation which simulates the participant runs. The first call in the sequence registers
the process with waitForSimulatorRequest for the interaction with a specific participant in a
certain simulation and blocks until one of the two following events occur. The one event occurs
if the participant enters one of the movement modes AUTONOMOUS or TRAINING and the runtime
verification calls requestAiFor. The other event occurs if the simulation stops. The call to
waitForSimulatorRequest is the only required call. Any other call may be omitted. If the
request returns and the simulation is not in state RUNNING the interaction stops, the process may
clean up memory and exit. Otherwise the interaction continues and may request properties about
participants or their sensor data. At this point a client can collect training data for AIs. If a
participant is in movement mode AUTONOMOUS the process can either calculate commands which
handle the AV or send commands which control the simulation. If the participant is in movement
mode TRAINING it can only control the simulation and the MainApp ignores any command which
controls an AV. Then the sequence of interaction calls starts over again.
Internally a SimNode implements all phases of the test life cycle (see Figure 5) and therefore
the appropriate components of DriveBuild as Figure 9 shows. The Transformer implements
the input validation step. Therefore it validates tests against the XSD which DriveBuild
provides. The Generator and the Kleene-Priest-Transformer (KPTransformer) implement
the extraction step as well as the transformation step. In the extraction step they use XPath
to extract all information that the semantic model requires. The actual semantic model results
from the transformation step. The Generator uses structs to represent the environment of a
simulation. The KPTransformer parses precondition, success and failure criteria from top
to bottom and recursively creates λ expressions that abstractly represent the test criteria as
Kleene and Priest logics expressions. These λ expressions take a BeamNG scenario as their
input and can evaluate the criteria based on the current state of the scenario. Further the
KPTransformer attaches default data requests which collect data to partially reproduce a
simulation without having to actually execute it again or which future work might require. It also
may attach additional sensors to participants if the evaluation of criteria requires further data.
On the one hand the SimController creates and manages the simulations and the runtime
verification processes and on the other organizes the interaction with the MainApp.
Before starting a simulation the SimController has to generate a BeamNG scenario. The
level for the scenario is an infinitely big flat plain which is covered with grass. A BeamNG
scenario consists of a JSON, a prefab and a LUA file. The JSON file contains meta data about
the scenario including its name, the author, a description and a reference to the prefab file. The
prefab file describes the static information about initial states of vehicles, roads, waypoints and
LUA triggers. The SimController uses BeamNGpy to create an initial BeamNG scenario
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:Client :MainApp

/runTests

SubmissionResult

/ai/waitForSimulatorRequest

requestAiFor

SimStateResponse
Wait for control

/ai/requestData

DataResponse

Calculate control commands

/ai/control

Void
Apply control

commands

For each AV
in parallel

For each AV
in parallel

While simulation runs

Figure 16: Client scheme — Depicts the basic scheme of the sequence of calls that a client has to
make to implement interaction with DriveBuild. Therefore it has to use the interface which
Table 5 lists.
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# Given a declared participant with ID "<someParticipantID>"
vid = VehicleID()
vid.vid = "<someParticipantID>"

# Given declared request data with IDs "<requestA>" and "<requestB>"
request = DataRequest()
request.request_ids.extend(["<requestA>", "<requestB>"])

(a) Creation of simple messages
# Given an object submission_result of type SubmissionResult
# Given a declared test with name "<testA>"
print(submission_result.message.message)
print(submission_result.result.submissions["<testA>"].sid)

# Given an object data of type DataResponse
# Given declared request data with IDs "<requestA>" (RoadCenterDistance) and

"<requestB>" (Speed) and an undeclared ID "<requestC>" (Error)↪→

print(data.data["<requestA>"].road_center_distance.road_id)
print(data.data["<requestA>"].road_center_distance.distance)
print(data.data["<requestB>"].speed.speed)
print(data.data["<requestC>"].error.message)

(b) Access to attributes of complex messages

Listing 1: Example PMessages — Demonstrates the creation and usage of the fundamental
PMessages that a client implementation requires.

but further modifies it since BeamNGpy does not provide all required features.
The definition of positions of participants in the formalization corresponds to BeamNG but the
definition of orientations of participants defers. The formalization defines orientation as Figure 1
shows. In contrast BeamNG defines orientation in clockwise manner and an orientation of 0°
makes the car head in negative y direction. So the generator has to translate the orientation
accordingly before placing participants in a BeamNG scenario. When adding a road it is
smoothened by interpolating the points which the semantic model stores for its course with
a cubic B-spline. The interpolation sets the smoothness to 0 and adds additional points to
ensure that the resulting course fits all points perfectly and the its shape is like expected. The
interpolation is done with SciPy [68] The road markings in the scenario are implemented as
narrow lanes which are parallel to the B-spline and just have a different texture than the actual
road. SciPy provides methods to calculate these parallel lines, i. e. offset lines. A road has a
declared number of left and right lanes. The generator creates two offset lines for the left and
right side road marking (continuous white line), one offset line which separates left from right
lanes (continuous double yellow line) and offset lines that separate left and right lanes from each
other (dashed white line). The dynamic behavior of participants is described by sequences of
waypoints in the semantic model. The generator adds for each of these waypoints corresponding
BeamNG waypoints which have the position and size as defined in the semantic model. Further
it adds LUA triggers for each BeamNG waypoint. LUA triggers define areas where custom
LUA functions are executed as soon as the bounding box of a participant intersects with it or
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does not intersect with it anymore. When a participant reaches a LUA trigger the simulation
calls a custom LUA function which makes the participant move to the next BeamNG waypoint.
Since these functions make a participant approach to a BeamNG waypoint such a way that
it almost touches the waypoint without intersecting it LUA triggers have to be slightly bigger
than the underlying BeamNG waypoint to make sure the participant intersects the LUA trigger.
When a participant reaches a LUA trigger the custom LUA function also applies the additional
properties of the waypoints in the semantic model which includes target speeds, speed limits and
changes of the movement mode. Due to the internal implementation of BeamNG a speed limit
overrides a target speed. If the generation of the BeamNG scenario finished the SimController
starts a new BeamNG instance, loads the scenario and starts the simulation.

6.5 DBMS

The database uses PostgreSQL since PostgreSQL is well known, well supported in many
languages and provides the data type SERIAL which allows to easily and safely generate unique
SimulationIDs for tests. Figure 17 depicts the complete scheme which DriveBuild uses to
store data about finished and currently running tests as well as data about properties and sensor
data of all participants in any runtime verification cycle. The table “Test” stores for each test
execution the SimulationID, the current test result, the current state of the simulation and
timestamps for when the execution started and finished. Additionally it contains serialized byte
strings of the DBE and DBC which specify the test. Each entry in “Test” references the user
in “User” who submitted the test to DriveBuild. Each user has an username and a password.
The table “VerficationCycles” stores all data which the runtime verification collects in each
cycle. This includes especially all properties and sensor data of any participants. Since the
properties as well as the sensor data is highly diverse and may change when more sensors are
added or when the provided detail of sensor data increases it is very hard to specify a fixed static
database management system (DBMS) scheme. So the collected data is stored in a single field
where a serialized DataResponse object contains all the data. Each entry additionally stores two
timestamps that save the time from the start of a cycle until the call to BeamNG for continuing
the simulation.

7 Evaluation

The evaluation aims to show that the test formalization of DriveBuild is general enough to be
used with different approaches for implementing test generators and AIs. It also aims to show
whether test executions on a single SimNode on a real machine scale linearly and whether the
performance degradation when using VMs to host SimNodes is unbearable. The evaluation
addresses the following main research questions:

RQ1 How comprehensive is the test formalization concerning the support of various kinds of
test generators and AIs? Different approaches for test generators and AIs have different
requirements when testing them. The creation of benchmarks and ratings for comparing
test generators and AIs to each other introduces even further requirements. Thus in
order to interact with test generators and AIs, to analyze and to offer feedback data the
formalization has to fulfill these requirements. The evaluation focuses on approaches that
Section 4 presents to investigate the research question.
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Figure 17: Database scheme — Depicts all the data that DriveBuild stores about executed and
running tests and how the data relates.
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RQ2 How does DriveBuild scale over real machines and VMs? DriveBuild is a distributed
system and aims to run as many simulations as possible in parallel. This research question
investigates how many tests a single SimNode can run without having an influence on the
test results, the benefit of utilizing parallelism and whether hosting SimNodes in VMs is a
feasible solution to distribute simulations over a cluster.

RQ3 How supportive is DriveBuild for developers in setting up simulations, running tests and
collecting data? A goal of DriveBuild is to lift out testers of tedious and error prone tasks
like setting up and managing simulations as well as implementing an interaction between
simulations and AIs. This research question qualitatively evaluates the benefits of using
DriveBuild compared to manually setting up and executing tests. Therefore it compares
the effort to understand and use DriveBuild to the benefits DriveBuild offers.

The evaluation has four subsections. Section 7.1 elaborates in which context the evaluation took
place and lists all technical specifications which are relevant. Section 7.2 describes the test for
checking the comprehensiveness of the test formalization and introduces a number of metrics
which DriveBuild can yield about test generators and AIs. Section 7.3 quantitatively evaluates
the scalability of DriveBuild concerning the number of simultaneously executed simulations and
the number of SimNodes connected to the MainApp. It also compares the scalability between
a SimNode running on a real machine and SimNodes hosted on VMs. Section 7.4 examines
qualitatively the benefits of DriveBuild, how supportive it is for testers and the presumably
most difficult tasks when using it.

7.1 Experimental Settings

7.1.1 Seminar

The evaluation took place in the context of the advanced seminar “Search-based Software
Engineering for Testing Autonomous Cars (5846HS)” in summer term 2019 at the University of
Passau and had 10 participants which were all either master students or bachelor students in
a higher semester. The students were assigned papers that propose and discuss test generators
and approaches for training AIs. As part of the seminar, the students had the task to implement
small prototypes of test generators or AIs which I will refer to as “submissions”. So they have to
face problems which are similar to problems real tester have. The problems include the setup
of BeamNG, the management of simulations and the collection of data which are problems
that DriveBuild claims to solve. Hence I targeted the students as users like testers would use
DriveBuild.

7.1.2 Submissions

Section 3 explains all approaches the students used for their submissions. Three students
implemented test generators. Test generator G1 focuses on generating tests that verify whether
AVs can avoid crashes. Therefore it uses a predefined list of 528 IDs of crash reports referencing
the NHTSA crash report database which provides these reports as semi-structured XML. G1
utilizes AC3R [28] which generates BeamNG scenarios. It parses these BeamNG scenarios and
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formalizes them such a way that they can be used with DriveBuild. Test generator G2 aims to
generate test scenarios that focus on verifying the lane keeping capabilities of AVs. It claims to
extend AsFault [30] by randomly placing static obstacles all over the area where the road is
settled. Test generator G3 focuses on testing lane keeping capabilities of AVs as well by applying
evolutionary computing to generate a population of interesting roads. Each call to G3 returns
only the first element of the resulting population. It does not apply any metric to determine a
specific element in the population. Besides the test generators students submitted I created a
reference generator G0 which generates random tests using AsFault. The generated tests have
one road which is restricted to be placed in an area of 100 m × 100 m. This road has two lanes
and a fixed width of 8 m. The initial seed is a random number between 0 and 10 000.
Two of the students implemented AIs. The AI A1 is based on a version of deep reinforcement
learning which uses deep deterministic policy gradient (DDPG) and a variational encoder (VAE).
The student pretrained the AI on roads generated by AsFault. AI A2 uses DeepDriving. To
pretrain the AI the student drove a car manually with BeamNG on the level which DriveBuild
uses for its simulations. Additionally to the AIs students implemented I use the BeamNG AI
as reference AI A0. This AI has perfect knowledge about all roads but does neither recognize
any obstacles nor any other participants. It has an option “stay on lane” which allows to define
a single target waypoint instead of a sequence of consecutive waypoints the AV has to follow.
The AI is able to detect which lanes it has to follow to reach the desired target waypoint. As a
restriction the target waypoint has to be right in the middle of the road otherwise the BeamNG
AI does not find a path to it.

7.1.3 Technical Specifications

DriveBuild is a distributed system and the evaluation utilizes this capability by running the
components of DriveBuild, test generators, AIs and the actual evaluation process across multiple
nodes. Table 8 lists the specifications of all available nodes. During the evaluation node 0 hosts
one instance of the MainApp which is accessible from all the other nodes and node 1 runs all the
submitted test generators, AIs and the SubmissionTester which encapsulates the execution of
the submissions, their interaction with DriveBuild, the preprocessing of tests and the collection
of data for the evaluation. Node 2 and one or multiple instances of node 3 may run instances of
SimNodes depending on the current test setup. Each active instance of these nodes hosts exactly
one SimNode.

7.2 Evaluation of Generality

The evaluation of the generality of the test formalization considers two main aspects. The first
aspect is the feature coverage that determines which features of DriveBuild were used during
the evaluation and which submissions used them. The second aspect examines on the one hand
which metrics the submissions require to operate and whether DriveBuild provides them and
on the other hand which further metrics DriveBuild offers to create detailed analysis about the
submissions. All time measurements in any evaluation use real time over simulation time since
measuring real time is at many points easier than measuring simulation time. Further real time
considers in contrast to the simulation time the time test generators require to generate new tests
as well as the time AIs need to calculate control commands.
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Table 8: Node specifications — Lists the specifications for all (virtual) nodes that were used for
the evaluation.

Property Node 0 Node 1 Node 2 Node 3
Hardware/VM? VM Hardware Hardware VM

OS Linux Debian Windows 10
Enterprise Windows 10 Pro Windows 10 Pro

Version 10 1903 1903 1903
Build 4.19.0–6 18362.418 18362.418 18362.418
Architecture 64 bit 64 bit 64 bit 64 bit

CPU Intel Xeon
E5–2630

Intel Core
i7–7700K

Intel Core
i7–7700HQ

Intel Xeon
E3–12xx v2

Clock Rate 2.4 GHz 4.2 GHz 2.8 GHz 3 GHz
Logical Cores 8 8 8 2
RAM 8 GB 16 GB 16 GB 16 GB

GPU Not used GeForce
GTX 1080

GeForce
GTX 1070

GeForce GTX
Titan Black

Driver Version Not used 436.48 436.48 436.30

7.2.1 Challenge Test

In order to investigate these aspects the challenge test runs the submitted AIs against the
submitted test generators. In terms of the challenge test a combination of a test generator and
an AI is called a “match” and has a fixed time budget. One execution of the challenge test lets
each AI compete against each test generator. Each match repeats the following steps again and
again until the given time budget is used. First, the selected test generator generates a test. In
case the generator succeeded the SubmissionTester checks multiple validity constraints which
ensure that the test can be executed and that it can be compared with generated tests of other
test generators. A test is only valid if it defines at least one participant with the name “ego”,
defines at least one road and the generated citeria (DBC) references the generated environment
(DBE). If the SubmissionTester considers the test valid it further modifies the test to ensure
comparability with other tests and compatibility with the AI assigned to the match: It enforces
a failure criterion which makes the test fail if any participants is off-road or damaged. It also
forces the AV “ego” to be in movement mode AUTONOMOUS during the whole simulation and any
other participants to be in movement mode TRAINING to make sure it can collect data about all
participants. To enable the assigned AI to operate properly the SubmissionTester adds data
requests to the test for all monitoring data the AI requires. For the analysis of the submissions it
adds even more data requests to every participant which store the heading angle as well as the
position of the participant. In case of A0 the SubmissionTester has to define a target position
for the AI. Appendix A.2 describes the process of finding an appropriate target position in detail.
The SubmissionTester submits the preprocessed test to DriveBuild. If DriveBuild accepts
the test the SubmissionTester creates one instance of the assigned AI and connects it to the
AV with ID “ego”. I execute the challenge test in different configurations. An execution defines
the time budget for matches either with 10 min or 30 min and enforces road markings or no road
markings. Additionally I repeat each execution once which results in a total of 8 executions. At
the end this yielded a total number of 1208 generated tests.
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from drivebuildclient.aiExchangeMessage_pb2 import SimulationID, VehicleID,
DataResponse↪→

from pathlib import Path
from typing import Optional, Tuple

class TestGenerator:
def getTest() -> Optional[Tuple[Path, Path]]:

# NOTE The first path points to the DBE, the second to the DBC
raise NotImplementedError("Not implemented, yet.")

Listing 2: Test generator stub — Describes the stub for the implementation of a test generator.

7.2.2 Interfaces for Challenge Test

To allow the SubmissionTester to work with all submissions homogeneously they have to
implement predefined interfaces. A test generator has to provide a class with a method having
the signature given in Listing 2. The method getTest() does not accept any input and returns
a tuple with two paths where the first points to a DBE file and the second to a DBC file which
references the DBE file. The method may return None if the generator is not able to generate
more tests.
An implementation of an AI has to implement the interface Listing 3 shows. The constructor of
the AI accepts an instance representing the connection to DriveBuild. This connection provides
methods for the AI to request data and control AVs. The method add_data_requests(…) adds
data requests (see Listing 7) which the AI requires for operation to the declarations of AVs.
Therefore it accepts the XML tag to which the data requests have to be added to and the ID of
the AV for which the data requests are declared. This ID should be used to create unique IDs
for the declared data requests. The method start(…) follows the client scheme (see Figure 16)
which implements the interaction between an AI and DriveBuild. It accepts the ID of the
simulation which simulates the AV to control, the ID of AV itself and a callback method which
gathers runtime data about the simulation for the evaluation afterwards.

7.2.3 Feature Coverage

The feature coverage indicates which features of DriveBuild were used during the evaluation and
thus it suggests which features are somewhat tested and presumably work as they are expected.
Table 9 summarises the most basic features DriveBuild provides and which submissions use
them. The submissions use only a very restricted subset of the features that DriveBuild offers.
There is only one test generator which declares obstacles. There is also only one test generator
which defines more than a single participant on a single road and which intentionally creates
intersections. That the test generators use the road markings feature results from the fact that
the configuration of the challenge test enforces them. The AIs rely on camera images and one
AI additionally relies on the current speed of an AV. The evaluation part of the table includes
features to evaluate the challenge test as well as the test criteria. The evaluation uses only features
which are related to check and analyse the lane keeping capabilities of AIs. The evaluation does
not declare any criteria that use validation constraints (VCs).
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from drivebuildclient.aiExchangeMessage_pb2 import SimulationID, VehicleID,
SimStateResponse↪→

from drivebuildclient.AIExchangeService import AIExchangeService
from lxml.etree import _Element

class AI:
def __init__(self, service: AIExchangeService):

self.service = service

@staticmethod
def add_data_requests(ai_tag: _Element, participant_id: str) -> None:

raise NotImplementedError("Not implemented, yet.")

def start(self, sid: SimulationID, vid: VehicleID, add_dynamic_stats:
Callable[[], None]) -> None:↪→

while True:
sim_state = self.service.wait_for_simulator_request(sid, vid)
if sim_state == SimStateResponse.SimState.RUNNING:

add_dynamic_stats() # Allows the evaluation to introduce
further calls to DriveBuild↪→

# Request data
# Control AV or simulation

else:
break

Listing 3: AI stub — Shows the scheme of the implementation of AIs required for the evaluation
and uses the client scheme of Figure 16.
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Table 9: Feature coverage — Summarizes which features are used by the submissions and
the evaluation. If a cell contains check mark a submission or the evaluation uses the feature
intentionally. If a cell contains a tilde the feature is used only sometimes and the submission is
not explicitly designed to use it.

Feature G0 G1 G2 G3
Scenario Elements

Multiple participants X
Obstacles X
Multiple roads X
Intersections ~ X ~ ~

Test Configuration
Road markings X X X X
Speed limits
Target speeds

A0 A1 A2 Evaluation
Data Requests

Camera images X X
Speed X
Position X
Bounding box X

Criteria
Damage detection X
Off-road detection X
Goal area detection X
VC
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Figure 18: Execution times — Visualizes the durations of executed simulations and their standard
deviation. The execution time includes generation of a test, upload to DriveBuild, start of a
simulator instance, running the test until it finishes. This diagram shows only execution times of
tests which did not encounter a timeout.

As a conclusion the small set of used features is sufficient to support all submissions and to create
metrics to analyze them. DriveBuild offers many more features which are not listed in Table 9.
Since neither the submissions nor the evaluation use them their investigation is subject of future.

7.2.4 Efficiency of Test Generators

The efficiency of test generators is a metric to identify how many valid tests a generator can
produce in a given time interval. Figure 18 visualizes the distribution of the duration of the
executed tests. The efficiency e of the test generators is 1 divided by the average time per test
execution tavg (see Equation (1)).

e = 1/tavg (1)
The average execution time tavg for G0 is 1.75 min, for G1 0.70 min, for G2 0.28 min and for G3
0.60 min. G2 is by far the most efficient test generator. G1 and G3 have a similar efficiency
despite the fact that G1 uses AC3R which focuses on generating very compact test scenarios
and should result in short execution times whereas G3 uses a GA to evolve tracks. G0 is clearly
the least efficient test generator although G2 claims to use AsFault the same way. Figure 19
groups the generated tests by test generator and compares the number of generated tests based
on the available time budget of the challenge test execution. When comparing the number of
generated tests in executions with different time budgets the number of generated tests within
30 min is about three times as high as within 10 min. This suggests that the efficiency of the test
generators does not decrease the longer they run although some of them should rely on feedback
data. A validation of this statement requires many more executions of the challenge which is not
done during this thesis.

7.2.5 Complexity of Test Cases

Metrics about the complexity of generated tests allow to estimate how difficult it is for an AV
to succeed a test. Depending on which properties of an AV have to be tested different aspects
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Figure 19: Number of generated tests — Shows how many valid and invalid tests each of the test
generators generated in total during the challenge test. The diagram groups them by the time
budget available in a round. It also shows their standard deviation.

of complexity are considered. Since most of the submitted test generators test lane keeping
capabilities the evaluation investigates the complexity of the generated environments and how
far AVs traveled. For the metrics I use amongst others the number of scenario elements i. e.
participants, obstacles and roads plus the complexity of the curvature and the length of the
generated roads.
Figure 20 visualizes the number of scenario elements. Every test generated by G0, G2 or G3
declares exactly one road and one participant. In contrast to any other generator G1 often
defines two roads and one participant on each road. This is due to the fact that G1 uses crash
reports to generate test cases and the crash reports that the underlying database provides most
commonly involve two participants and often intersections. G2 is the only generator that adds
static obstacles to its tests since the student who implemented it had the explicitly the task to
generate tests with obstacles.
Figure 21 shows the distribution of the lengths of the generated roads. The shorter generated
roads are the less potential they have to have a complex and diverse curvature. The longer the
generated roads are the longer the execution of a test takes for an AV to succeed. G0, G2 and G3
generate roads of very similar length but G3 has a little less variety in their length. G1 generates
much shorter roads which is a result of AC3R which aims to generate very compact test scenarios.
This indicates that G1 does not define complex roads.
Figure 22 depicts the distribution of the number of segments that define each generated road.
The lower the number of road segments the lower is the potential of the road to have a complex
and diverse curvature. The fewer road segments define a road and the longer the road is the more
likely it is that the generated curvature differs from what the test generator intended since it
relies more on the interpolation done by DriveBuild. Every road generated by G1 has a low
number of segments which fits well with the goal of AC3R to create very compact tests. G3 uses
a constant number of road segments. The initial population is a set of randomly placed positions
which define the segments of a road. Based on this population the GA which G3 applies evolves
tracks by repositioning the segments. G2 uses a constant number of road segments as well but
the number of segments is much lower. Since the roads are much longer compared to roads of
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Figure 20: Number of scenario elements — Shows which types of scenario elements like participants,
roads and obstacles generated tests included and how many.

Figure 21: Road lengths — Visualizes the lengths of the generated roads grouped by test generator.
The longer a road is the potentially more complex its curvature might be.
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Figure 22: Number of road segments — Depicts the number of road segments that were used for
any road generated during the challenge test. It groups them by test generator.

other generators it is likely that they have many long and only slightly winding sections and may
not have a very diverse curvature. The constant number of road segments further indicates that
the implementation of G2 does not use AsFault to generate random roads as it was supposed to
do. This becomes especially clear when compared to G0. The number of road segments generated
by G0 has a much higher variety. Combining this observation with the fact that the length of the
generated roads has a variety similar to G2 and G3 indicates that the generated roads may have
in some cases more linear and in others more winding sections.
Figure 23 supports these observations. Further it shows that G1 and G2 restrict the segments
of the generated roads to be placed in an area of a size 200 m × 200 m whereas G3 only uses an
area of size 100 m × 100 m. In comparison G0 uses a larger area and distributes its lanes over the
available area.
To get an impression about the variety of curvatures of the generated roads Figure 24 shows the
roads rotated and translated such a way that the first road center point is in the origin and the
second is right below of it. The roads generated by G0 consist mainly of one or two big curves
and often face in a similar direction. Only occasionally a road has multiple curves that head in
different directions and it rarely has sharp turns or long straight sections. G1 generates solely
almost short and straight roads as expected from AC3R. The center points of the roads generated
by G2 seem to be uniformly and randomly distributed over a predefined area which contradicts
with its claim to use AsFault for the generation. G3 generates highly diverse and complex
roads with many curves having different directions and sizes. The generated roads may even
revolve the initial position which makes the roads interesting on an intuitive level. To estimate
how interesting the generated roads are future work may use quantitative metrics [32] to further
investigate the generated roads.
Figure 25 visualizes how far AVs traveled on generated roads. Comparing Figure 25 with Figure 24
shows that the ratio of the distance AVs under test traveled to the length of the roads is low.
This confirms that either the AIs have no good lane keeping capabilities except for A0 which has
perfect knowledge about the lanes or the test generators are very effective in finding bugs in the
lane keeping capabilities of AIs.
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(a) Roads generated by G0 (b) Roads generated by G1

(c) Roads generated by G2 (d) Roads generated by G3

Figure 23: Visualization of roads — Visualizes the segments of all generated roads. Each picture
covers all points where −250 < x < 250 and −250 < y < 250 except for Figure 23c which is
shifted to cover all points with −125 < x < 375. The red point marks the origin. The points are
connected with straight lines instead of interpolating them as they are when starting a simulation.
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(a) Curvature of roads generated by G0 (b) Curvature of roads generated by G1

(c) Curvature of roads generated by G2 (d) Curvature of roads generated by G3

Figure 24: Visualization of road curvatures — Visualizes the segments of all generated roads but
equally rotated based on the first two road segments and translated to start at the origin. Each
picture covers all points where −250 < x < 250 and −125 < y < 375. The red point marks the
origin.
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(a) Traveled distances on roads generated by G0 (b) Traveled distances on roads generated by G1

(c) Traveled distances on roads generated by G2 (d) Traveled distances on roads generated by G3

Figure 25: Visualization of traveled distances — Visualizes the segments of all roads in Figure 24
but depicts only the actually traveled segments. Each picture covers all points where −250 <
x < 250 and −125 < y < 375. The red point marks the origin.
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Figure 26: Test results — Depicts the number of generated tests and groups them by test
generator. It further distinguishes the number of generated tests based on their test result where
ERRORED and NOT MOVING are no actual test results but denote that the test generator failed to
generate a test or the connected AI did not move respectively.

7.2.6 Effectiveness of Test Generators

The effectiveness estimates how effectively a test generator can find bugs in AIs. The effectiveness
of test generators is computed by dividing the number of failed tests through the sum of failed
and successful tests. The 8 executions of the challenge test yielded in total 1208 generated tests
where 1114 were valid and could be executed. Figure 26 and ?? show all test results and group
them by either the test generator or the AI. The computation of the effectiveness considers only
successful and failed tests but there are more tests. According to Figure 26 G0 and G1 AV did
not move in some tests. An AV is considered as non moving if it does not move more than 5 m
within the first 60 s of the simulation. These two values are chosen based on a sophisticated guess
considering the startup time of BeamNG and the possible computation overhead of the connected
AI. Since according to Figure 27 the only AI that did not move in some tests cases is A0 it is very
likely that G0 and G1 did not always define goal positions that fulfill all restrictions inherited
by the BeamNG AI. Additionally many generations of G1 resulted in an error. According to
the log of the challenge executions errors occur because the download of a police report fails,
AC3R throws an error or AC3R is not able to translate the police report into a comprehensive
simulation. In addition many tests result in a timeout which means that a test does neither fail
nor succeed within a predefined time. This can happen if the connected AI does not respond i. e.
continue with the execution of the client scheme or the success criterion is either infeasible or the
AI requires more knowledge about the scenario to fulfill it e. g. a goal area which is behind but
not in front of the AV. This timeout consideration applies also for G3.
Table 10 lists how many of the executed tests succeeded and failed per test generator as well as
the resulting effectiveness. Compared to the other generators G2 is less effective in generating
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Figure 27: Test results — Divides the executed tests by their result and groups them by the
connected AI. The test results NOT MOVING and ERRORED are no actual test results but denote
that an AI did not move or its implementation threw an error.

Table 10: Test generator effectiveness — Displays the calculation of the effectiveness of the test
generators. Higher values indicate higher effectiveness.

Property G0 G1 G2 G3
#Failed 161 117 200 198
#Succeeded 32 36 229 73
Sum 193 153 429 271
Effectiveness 0.83 0.76 0.47 0.73
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Figure 28: Goal area sizes — Shows the sizes of generated goal areas that vehicles have to reach
in order to succeed a test. It only considers valid goal definitions of goal regions.

tests that trigger faulty behavior of AIs although it should be very similar to G0. Both generate
always exactly one participant which drives on a single road and both claim to use AsFault for
generating roads. G2 has in contrast to G0 very small roads and additionally adds obstacles to
its test scenarios (see Figure 20). So one would expect G2 to be more effective than G0 since it
should be more likely that an AV goes off-road or crash into an obstacle. This is clearly not the
case. G0, G1 and G3 have a high effectiveness which mainly results from the bad lane capabilities
of the AIs that the short traveled distances (see Figure 25) suggest.
According to Figure 20 G1 is the only generator that adds more than one participant and one
road. Since the AIs focus on lane keeping and not on crash avoidance the test generators reveals
many bugs and therefore it has a high effectiveness. Figure 28 shows the area sizes of the goal
regions (in m2) the test generators defined for the AV under test to reach. The area of the goal
regions G0 generates is constant. To define the goal region in a test G0 selects the road center
point of the last segment of the generated road and specifies at this point a goal position having a
tolerance radius identical to the width of the road. Since the width was fixed during the challenge
test the size of the resulting goal regions is constant. In a similar way G3 chooses one of the road
center points and defines the goal region by a square with a fixed edge length of 20 m around the
point. So the size of the resulting goal areas is constant as well. G1 generates the smallest goal
areas which results from the fact that the generated tests are very compact and do not require
big goal areas. G2 generates vastly bigger goal areas which are likely to contain almost the whole
environment. A look into the implementation of G2 reveals that it uses the first and the last two
road center points to create a huge triangle which then defines the goal region of a test. Hence
often an AV almost immediately succeeds a test without driving at all which leads to the low
effectiveness of G2. Figure 29 depicts for how long AIs drove in simulations of generated tests
and supports this observation.

7.3 Evaluation of Scalability

This experiment is organized in two parts. The first part evaluates the scalability of a single
SimNode which runs on real hardware. The second part examines whether SimNodes can be
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Figure 29: Execution times of AIs — Visualizes the time that AIs drove on tests scenarios until
the simulation finished without being canceled and without timeout.

hosted by VMs, whether this influences the results of executed tests and the benefits of distributing
simulations across multiple SimNodes. For the experiment I used a fixed test scenario T which
was generated by G0. T defines a single road and places a single AV on it that has to follow the
road to succeed the test. To control the AV I used A0 (see Section 7.1.2) and T is configured to
request it every 0.5 s. The timeout for test executions is fixed to 10 min.
The first part of the experiment used a setup of DriveBuild where node 2 (see Table 8) was
the only connected SimNode. In each round I created between 1 and 10 instances of T and
submitted them to DriveBuild all at once. Figure 30 shows the execution time for each of the
10 rounds. Every execution of T in every round succeeded except for one execution in round 9
which yielded a timeout. When submitting 9 or more instances of T at once the simulations get
so slow that some of them may exceed the timeout and thus not succeed as they would if they
were less simultaneously running instances of T . To avoid this problem each SimNode defines a
maximum number of simulations it can handle simultaneously. If every SimNode reached the
limit HTTP requests for submitting more tests DriveBuild rejects them stating that there were
too many active requests. For sake of this experiment I disabled this limit on every SimNode.
However, the diagram clearly visualizes that DriveBuild is able to utilize parallelism to speedup
test executions as this work claimed. Further the regression line suggests that the execution time
for less than 11 tests is linear. But much more test executions with even more instances of T are
required to support this observation.
Figure 31 shows how long the execution of each single instance of T in any round took to complete.
It also visualizes when executions of T started and how they took until they ended. The relative
start of the tests per round reveals that the startup time of BeamNG is about 50 s. According
to Figure 30 the execution of a single instance of T takes about 210 s. Hence the startup of
BeamNG takes almost a quarter of the complete execution time of a single instance. The diagram
also shows that the earlier a test in a round is started the longer it takes to complete and tests
in the same round often complete almost at the same although they start offset and each test
should take the same time. One possible explanation might be that DriveBuild has a bug
which e. g. makes test executions synchronize with each other and finish at the same time. I was

54



Figure 30: Execution times — Shows the scalability of DriveBuild based on the number of tests
submitted at once. It also shows a linear regression line (blue) and the linear projection if the
instances of T were executed sequentially (red).

Figure 31: Test executions — Visualizes when tests started and how it took until they ended. It
visualizes succeeded tests as well as tests which yielded a timeout. The diagram also includes a
vertical line which marks the configured timeout.
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Figure 32: Scalability results for VMs — Shows how many tests finished depending on the number
of available SimNodes and the number of submitted tests. The higher the values the more
reliable are test executions on VMs.

not able to verify such a bug through manual test executions. DriveBuild does not implement
any explicit prioritization of messages. Hence, another possible explanation might be that the
message exchange of DriveBuild assigns higher priorities to certain messages implicitly. A
SimNode maintains one socket the MainApp uses to start an instance of T and additionally
maintains two open sockets for each running instance of T . One socket accepts commands for the
AV which the client sends over the MainApp. This socket yields waitForSimulatorRequest and
requestData (see Table 6) alternately. The other socket accepts commands from the runtime
verification. Having this in mind one possible scenario which might lead to the observed results is
that starting new tests has implicitly a higher priority than commands from runtime verification
cycles e. g. stop a simulation when it succeeded or timed out. To validate these explanations
further investigation is required.
The second part of the experiment used a setup with either 1, 2 or 3 SimNodes which were
installed on VMs (see node 3 in Table 8). The VMs are managed using the simple linux utility
for resource management (SLURM) [69]. Since BeamNG is only available for Windows every
VM has to run Windows. Further BeamNG requires a good central processing unit (CPU) as
well as a very good GPU. To minimize the expected performance loss SLURM provides direct
and isolated access to the GPU. So the GPU is not shared with any other program running on a
SLURM node. I create either 1, 2, 5 or 8 instances of T and submit them to DriveBuild at once
which yields a total of 12 executions of the experiment with different configurations. Since it took
over a week to collect the data for the second part I did not repeat the experiment. In contrast
to the results of the first part the test executions result in many timeouts as Figure 32 depicts.
This results from the very poor performance of BeamNG when executed on a VM. On the one
hand, the diagram shows that an increasing number of simultaneously submitted tests rapidly
decreases the percentage of tests that properly finish. On the other hand, the diagram does not
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indicate that a higher number of SimNodes increases the percentage of properly finished tests.
Concerning the executions of the experiment which submitted 8 tests at once 3 tests finished
with 2 SimNodes connected, only 2 finished with a single SimNode connected whereas only 1
test finished with 3 SimNodes connected. This observation may result from the fact that the
SLURM cluster which hosts the SimNodes is shared with other researchers and thus it is used
intensively and under heavy but varying load. The observation may be also a result of the low
reliability of the low level socket communication between the MainApp and the SimNodes. If
a socket is not used for a certain time interval it closes its connection which leads to a timeout
of the simulation the socket has to handle messages for. To investigate these problems in more
detail much more test executions with SimNodes that are not hosted in VMs are required.

7.4 Experience Report

7.4.1 Process

The creation of a test generator or an AI is not trivial and requires a good understanding of the
concepts to apply. Additionally when it comes to trying out the implementations the students
had to deal with many new technologies which are involved in creating the program including
libraries, frameworks, development tools as well as to set up a simulator, handle simulations
and collect data. To avoid the problems concerning the actual simulations and retrieving data I
encouraged students to try out their implementations using DriveBuild. To enable them to use
DriveBuild I presented them the basic strategies and concepts DriveBuild implements and
showed them short code examples of possible test definitions i. e. DBC and DBE XML files as
well as a basic AI implementation. I did neither explain the implementation nor the underlying
communication protocol to the students. Instead I provided them a client API which hides the
details of the HTTP based communication. I suggested students to use debuggers to get to know
how the requested data and the abstract data objects look like. I have been available for them to
request help during the implementation of their programs, to request features which address their
needs and to provide feedback for DriveBuild. I implemented feature requests like an additional
data request for requesting the heading angle and the automatic creation of road markings. I did
not implement all of their features requests e. g. weather conditions. The future work section
mentions some of the feature requests which are not implemented yet.

7.4.2 Experience

Concerning the fact that the seminar targets master students and bachelor students in higher
semesters the level of skill and knowledge of some students was unexpectedly low. The XSD pro-
vided with DriveBuild is very long and uses advanced mechanisms including abstract elements
and substitution groups and some tried to fully understand it. Some students never heard of
XML, never used it and had no idea how to validate XML against XSD. Hence there was no
chance for them to get an overview over the whole range of capabilities the test formalization
offers. Instead I showed them only the most basic features such as the definition of roads, the
placement of participants plus the usage of the two criteria for damage and off-road detection.
Many students struggled to use predefined Python libraries which for example provide a tensorflow
implementation that they require for their AI implementation.
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For the students that implemented test generators one of the most complex topics was XML and
its validation with XSD. Many of them used the example definitions I provided almost literally
and only selectively modified them. When they tried to introduce the damage and off-road
oracles some of them failed since they did not understand how to use logical operators to create
compound conditions like “A test fails if an AV is damaged or is off-road”. No one of the students
used more than a single connective and no student utilized any kind of nested criteria because
this requires at least an intuitive understanding of temporal logic.
The most complex topics for the students implementing AIs were the necessary understanding
of the runtime verification cycle and the client scheme plus how these interact with each other.
Some students struggled to get an intuitive understanding of parallelism, why it is needed to
control multiple AVs at once and to handle parallel threads with start and join calls. It was
further difficult to explain them what data AIs can request, how to declare it for an AV and what
the data response looks like.
Some of the students did not succeed to either create something which runs on its own and utilizes
BeamNG or to create at least something which can be integrated with DriveBuild. The integra-
tion of the submissions was difficult because many students did not provide a comprehensive list
of requirements. Further there are restrictions to minimum and maximum versions of packages,
frameworks and Python itself. Especially setting up and integrating AI implementations was very
time consuming since these implementations rely on multiple complex libraries. AIs additionally
have external dependencies and some of the requirements and dependencies conflicted. Hence the
list of dependencies the SubmissionTester requires is long (see Table 12). Another problem
with AIs is to properly choose values for configuration parameters like initial population sizes
since students did not document them. Further the implementation of the interface of AIs is not
only required to use the predefined signature but also to implement the client scheme shown in
Figure 16.
Multiple students did not or at least not properly implement the interface for the Submission-
Tester as described in Listings 2 and 3. So I had to create, fix and extend most of the interfaces
the students provided to me. To make sure executions of submissions do not interfere with each
other the SubmissionTester has to separate them. Most of the submissions use paths relative
to the current working directory instead of relative to the called file. Thus I also had to change
all hard coded paths to make submissions work. Some submissions had bugs resulting from an
insufficient understanding of the concepts students should implement. To fix them I was required
to have a deep understanding of the strategies the students targeted to implement them myself.
The gained experience reveals that there are aspects which could be done or handled differently
in future work. One problem is the potentially conflicting dependencies and requirements the
submissions of the students introduce to the SubmissionTester. To avoid these conflicts the
SubmissionTester could use separate Python environments for each submission. As a drawback
this requires to create and maintain multiple Python environments and to activate and deactivate
them dynamically. This also increases the complexity of interacting with submissions and most
presumably requires students to implement more complex interfaces. Another approach would
be to use Docker [70]. Additionally to the advantages like when having multiple Python
environments Docker enables to start submissions in a clean state and to start multiple instances
of the submissions. At the current point it is not clear whether these features are required. The
approach also shares the same drawbacks but in a higher form since the effort of creating and
maintaining docker containers which include Python environments is higher than maintaining
Python environments directly. Further the activation and deactivation as well as the interac-
tion with Docker containers is even more complex and most presumably requires students to
implement even more complex interfaces. The interfaces for the SubmissionTester currently
pass test case definitions as paths to files containing XML. Since the test case definitions have to
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be modified for the evaluation it would be easier to deal with XML trees directly instead of file
paths. The evaluation shows that the reliability of the low level socket communication might be a
problem especially when hosting SimNodes in VMs and should be improved. Another thread to
the reliability is BeamNGpy since it is not designed to cope with parallel requests to the same
BeamNG instance.

8 Conclusions

In this work I developed a distributed system which automates simulation-based testing of
AVs. Therefore it presents a formalization of test cases and explains all relevant strategies
to generate simulations, handle simulator instances, evaluate test criteria during simulation
executions, distribute simulation executions over a cluster and implement the communication
between the components of DriveBuild and clients. Its evaluation works with students as users
of DriveBuild and utilizes their implementations of test generators and AIs. It showed that
DriveBuild is able to cope with all these various approaches. Further DriveBuild provides all
metrics that either the implementations require to operate or the evaluation requires to analyze
them. Since the number of available test generators and AIs is low and the quality of some of
them is not as good as expected the metrics to analyze them yielded not as much interesting
information as they could. So future evaluation should consider even more test generators and
AIs (e. g. DAVE [55]). The evaluation also illustrates that DriveBuild is able to distribute test
executions among a cluster and handle simulations and AVs in parallel. Further it reveals that
the performance when running SimNodes in VMs on a shared cluster is very bad. Research on
the causes that affect the performance issues requires much more test executions and dedicated
hardware resources. Based on the experience which the evaluation yields possible causes may be
low reliability of the low level socket communication or the fact that the hardware is virtualized.
However, there are already seminar courses at the university of Passau which use DriveBuild to
test AIs. Further there is an ongoing discussion with researchers at the “Université du Québec
à Chicoutimi, Canada” about integrating their event stream processing into DriveBuild to
implement runtime verification and real-time monitoring. Also at the Zurich University of Applied
Science (ZHAW) there is a thesis about testing AVs which utilizes DriveBuild.

9 Future Work

DriveBuild does not provide any visual feedback that shows more than camera images of
participants. Visual feedback is very important to get feedback about the generated environments
and to get an intuitive understanding of the movement of AVs. For the visualization a format like
ROSBAG [54] could be introduced. ROSBAG is a format which stores sequences of pixel clouds
to represent a simulation. This allows to visually debug simulations in 3D and rewind a simulation
forward and backward. Already a simple visual representation (e. g. a bird view like screenshot)
of the environment as well as the initial states, positions and orientations of participants in this
environment might be interesting for testers to get an idea about the setup of a test before it
is executed. There is already an ongoing project which plans to extend DriveBuild with a
debugger which visualizes the simulation and allows to define breakpoints, to pause and resume
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simulations plus to dynamically evaluate expressions during a simulation.
Concerning the initial orientation of participants DriveBuild defines angles relative to the
ground. The experience of this work shows that for test generators it would be easier to specify
the initial orientation of participants relative to the underlying road instead of the ground.
To determine whether an AV is off-road, drives on a certain road or is within a certain region
DriveBuild uses either the bounding box or the center position of the AV. In order to cooperate
with BeepBeep [25] future work should formalize these checks more precisely.
The load balancing of DriveBuild considers only the number of currently running tests on any
SimNode. A prediction of the resulting load of a simulation based on characteristics of submitted
DBEs and DBCs may improve the load balancing. To further improve the load balancing certain
messages like “stop” may have a higher priority whereas messages that start new simulations
may have a lower priority. The priority of messages may be also dependent on the estimated
remaining execution time of running simulations or their progress.
Currently DriveBuild is only able to generate road markings for single roads which do not change
their width and the number of lanes. Future work may improve road markings by considering
junctions, varying number of lanes, variable road width and more types of road markings including
broken or dirty road markings.
A future version of DriveBuild may be able to set different weather conditions including rain,
snow and slippery roads to check whether and compare how well AVs can cope with it.
DriveBuild provides training data in terms of traces (see Figure 17). To provide even more
training data future work may introduce additional approaches like SCENIC which uses the
previously collected data to generate even further new data. Training data may also include the
reasons why tests failed or succeeded. Therefore it is required to detect in case the failure or
success criterion was triggered which elements of the representing temporal logic expression were
involved to fulfill the criterion.
In future versions DriveBuild may also ship with a predefined set of test generators and AIs.
Therefore it may be interesting to allow a test setup for an AI to specify restrictions on the
generated roads like disallowing self intersection of roads.
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10 Acronyms
AC3R automatic crash constructor from crash

report
ACC adaptive cruise control
ADAS advanced driver assistance system
AI artificial intelligence
API application program interface
AV autonomous vehicle
AWS Amazon web service

BMW Bavarian Motor Works

CEP complex event processing
CNN convolutional neural network
CPU central processing unit
CRG curved regular grid

DARPA defense advanced research projects
agency

DAVE defense advanced research projects
agency (DARPA) autonomous vehicle

DBC DriveBuild criterion
DBE DriveBuild environment
DBMS database management system
DDPG deep deterministic policy gradient
DLR deutsches Zentrum für Luft- und Raum-

fahrt
DSL domain specific language

GA genetic algorithm
GM general motors
GPS global positioning system
GPU graphics processing unit

HTML hypertext markup language
HTTP hypertext transfer protocol

JOSM Java OSM editor

KPTransformer Kleene-Priest-Transformer

LGSVL LG Silicon Valley Lab
LiDAR light detection and ranging
LWJGL lightweight java game library

MainApp main application

MDP Markov decision problem
ML machine learning

NHTSA national highway traffic safety admin-
istration

NLP natural language processing

OS operating system
OSM OpenStreetMap

PMessage ProtoBuf message
ProtoBuf protocol buffers

RAM random access memory
REST representational state transfer
RL reinforcement learning
ROS robot operation system
ROSBAG ROS bag

SaaS service as a service
SC state condition
SimController simulation controller
SimNode simulation node
SLURM simple linux utility for resource man-

agement
SML scenario markup language
SOA service oriented architecture
StatsManager statistics manager

TCManager test case manager
TCP transmission control protocol
TORCS the open racing car simulator
TTC time to collision
TUM Technical University of Munich

URL universal resource identifier

VAE variational encoder
VC validation constraint
VM virtual machine

XML extensible markup language
XSD XML schema definition

ZHAW Zurich University of Applied Science
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A Appendix

A.1 Code Example Snippets

<?xml version="1.0" encoding="UTF-8" ?>
<environment xmlns="http://drivebuild.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://drivebuild.com drivebuild.xsd">

<author>Stefan Huber</author>
<timeOfDay>0</timeOfDay>

<lanes>
<lane markings="true">

<laneSegment x="0" y="0" width="8"/>
<laneSegment x="50" y="0" width="8"/>
<laneSegment x="80" y="20" width="8"/>
<laneSegment x="100" y="20" width="8"/>

</lane>
<lane>

<laneSegment x="50" y="-20" width="6"/>
<laneSegment x="30" y="50" width="6"/>

</lane>
</lanes>

<obstacles>
<!-- [...] Obstacle definitions -->

</obstacles>
</environment>

Listing 4: Example environment description — This example shows a basic environment description
defining two roads. Figure 2 shows the resulting generated roads.
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<?xml version="1.0" encoding="UTF-8" ?>
<criteria xmlns="http://drivebuild.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://drivebuild.com drivebuild.xsd">

<author>Stefan Huber</author>
<version>1</version>
<name>Test A</name>
<environment>environmentA.dbe.xml</environment>
<stepsPerSecond>10</stepsPerSecond>
<aiFrequency>50</aiFrequency>

<participants>
<participant id="ego" model="ETK800">

<initialState x="1" y="-3" movementMode="MANUAL" orientation="-38"
speedLimit="30"/>↪→

<ai>
<!-- [..] AI request data definition -->

</ai>
<movement>

<waypoint x="25" y="-12" movementMode="MANUAL" tolerance="1"/>
<waypoint x="53" y="0" movementMode="MANUAL" tolerance="1"/>
<waypoint x="80" y="18" movementMode="MANUAL" tolerance="1"/>
<waypoint x="98" y="19" movementMode="MANUAL" tolerance="1"/>

</movement>
</participant>
<participant id="nonEgo" model="ETK800">

<initialState x="50" y="-27" movementMode="MANUAL"
orientation="110" speedLimit="10"/>↪→

<movement>
<waypoint x="30" y="20" movementMode="MANUAL" tolerance="1"/>

</movement>
</participant>

</participants>

<!-- [...] Criteria definition -->
</criteria>

Listing 5: Example participant description — This example shows an example of positioning a
participant, defining its movement and which data its AI requires.
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<cube x="105" y="25" width="1" length="10" height="8"/>
<cylinder x="60" y="-10" radius="5" height="7"/>
<cone x="40" y="10" height="10" baseRadius="6"/>
<bump x="20" y="-8" width="1.5" length="5" height="0.1" upperLength="4.5"

upperWidth="1"/>↪→

Listing 6: Example obstacle definitions — This snippet demonstrates the creation of all available
types of static obstacles. Figure 2 shows a visualization of generated obstacles.

<boundingBox id="<someRequestID>" />
<camera id="<someRequestID>" width="800" height="600" fov="60"

direction="FRONT" />↪→

<carToLaneAngle id="<someRequestID>" /> <!-- FIXME Check whether this is
actually implemented -->↪→

<damage id="<someRequestID>" />
<laneCenterDistance id="<someRequestID>" />
<lidar id="<someRequestID>" radius="100" />
<light id="<someRequestID>" /> <!-- FIXME Check whether this is actually

implemented -->↪→

<position id="<someRequestID>" />
<speed id="<someRequestID>" />
<steeringAngle id="<someRequestID>" />

Listing 7: Examples for AI request data — This snippet shows all supported types of data that
an AV can request.

<!-- FIXME Check whether these are all implemented -->
<xArea participant="<someParticipantID>"

points="(<x1>,<y1>);(<x2>,<y2>);[...];(<xn>,<yn>)"/>↪→

<xDamage participant="<someParticipantID>"/>
<xDistance participant="<someParticipantID>" to="<someParticipantID>"

max="<maxDistance>"/>↪→

<xLane participant="<someParticipantID>" onLane="<someLaneIdOrOffroad>"/>
<xPosition participant="<someParticipantID>" x="<x>" y="<y>"

tolerance="<tolerance>"/>↪→

<xSpeed participant="<someParticipantID>" limit="<limit>"/>
<vcTime from="<fromTick>" to="<toTick>"/>
<vcTTC participant="<someParticipantID>" to="<someParticipantID>"

max="<maxTime>"/>↪→

Listing 8: Example criteria definition — This snippet shows example definitions for all types of
criteria listed in Table 3. The tag names are built from either the prefix “vc” or “sc” and the
type name of the criterion. To spare duplication the prefix “x” is used here to denote that the
prefix might be either “vc” or “sc”.
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A.2 Determine Target Position for A0

The test generators did not obey the restrictions to the target position that A0 (see Section 7.1.2)
introduces. So in case of A0 the SubmissionTester has to replace the declared target position
with a target position which is valid for A0. Therefore the SubmissionTester collects all
scPosition elements within the tag of the success criterion which are associated with the AV.
If there is exactly one element this defines the target position. If there are more than one the
generated test is considered invalid since the test seems to have a branch in its result. If there are
no scPosition elements the SubmissionTester collects all associated scArea elements within
the success criterion that are associated with the AV. If there is more than one element the test
is again considered invalid since it seems to have a branch in its result. Only if there is exactly
one such element the SubmissionTester computes the intersection with all roads in the DBE
and determines all road center points that lie within. The SubmissionTester uses one of these
points as target position. If there is no such road center point or there was no associated scArea
the SubmissionTester uses the last waypoint of the movement which the DBC specifies for the
AV.

A.3 Used Tools

Table 11: Used tools and libraries — This table lists all tools, frameworks and libraries that the
components of DriveBuild use or a client implementation needs.

Name Version MainApp SimNode Client
BeamNG.research 1.6.1 5 X 5
beamngpy 1.13 5 X 5
dill 0.3.0 X X X
Flask 1.1.1 X 5 X
lxml 4.4.1 5 X 5
numpy 1.17.0 5 X 5
pg8000 1.13.2 X X 5
pip 19.0.3 X X X
PostgreSQL 42.2.5 5 5 5
protobuf 3.9.1 X X X
Python 3.7 X 5 X
scipy 1.3.1 5 X 5
setuptools 40.8.0 X X X
Shapely 1.6.4.post2 5 X 5
WinPython 3.7.4 5 X 5

Table 12: Used tools — This table lists all Python packages, frameworks and tools the Submis-
sionTester requires to run the submitted programs and the evaluation.

Name Version
AC3R —
Anaconda 2018.12
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asfault 0.0.post0.dev29+g41c537e
beamngpy 1.14.1
dataclasses 0.6
deap 1.3.0
decorator 4.4.0
descartes 1.1.0
flask 1.1.1
gym 0.14.0
jinja2 2.10.1
lxml 4.4.1
matplotlib 3.1.1
mpi4py 3.0.2
networkx 2.3
numpy 1.16.0
pg8000 1.13.2
pillow 6.2.0
pip 19.2.3
protobuf 3.9.2
pydotplus 2.0.2
pyqtree 1.0.0
python 3.6.9
python—dateutil 2.8.0
pyyaml 5.1.2
requests 2.22.0
setuptools 41.2.0
shapely 1.6.4
sklearn 0.0
stable—baselines 2.7.0
tensorflow 1.14.0
wheel 0.33.6
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