
Lehrstuhl für Software Engineering II

Automatically Generating Driving Simulations from Videos to

Address Safety Issues in Self-Driving Cars

Masterarbeit von

Qazi Mujahid

1. Prüfer 2. Prüfer

Prof. Dr. Gordon Fraser Prof. Dr. Sven Apel

3. Advisor

Dr. Alessio Gambi

May 22, 2020

Contents

1 Introduction 1

1.1 Research Questions . 4

1.2 Thesis Organization . 4

2 Background 5

2.1 Autonomy Levels . 6

2.1.1 Stage 0 - No Automation . 7

2.1.2 Stage 1 - Requirement of Driver as Support 8

2.1.3 Stage 2 - Fractional Robotics . 8

2.1.4 Stage 3 - Restricted Automation 9

2.1.5 Stage 4 - Elevated Automation 10

2.1.6 Stage 5 - Complete Automation Accomplishment 11

2.2 Sensors . 12

2.2.1 Camera . 13

2.2.2 Radar . 14

2.3 Coordinate System . 14

2.3.1 Game Coordinate system . 15

2.3.2 Coordinate Systems in Real World 16

2.3.3 Standard Problems in Coordinate System 17

ii

Contents

2.4 Open Street Map (OSM) . 18

2.4.1 Production of Maps: . 19

2.4.2 Street-level image data: . 19

2.4.3 Data storage in OSM: . 19

2.5 Histogram of Oriented Gradients (HOG) 20

2.5.1 Linear Support Vector Classifier (SVC) 20

2.6 BeamNG . 20

3 Literature Review 22

4 Methods 27

4.1 Step-1 . 27

4.1.1 Converting GPS format to GPX 28

4.1.2 Visualizing the GPX File . 28

4.1.3 Speed Normalizing . 29

4.1.4 Plotting a Segment . 30

4.1.5 Transformation of Geodetic Coordinate System to Geocentric Co-

ordinate System . 31

4.1.6 Road Geometry . 32

4.1.6.1 Pre Processing: . 33

4.1.7 Simulation and controlling of ego car 35

4.2 Step-2 . 36

4.2.1 Vehicle Detection . 37

4.2.1.1 Object tracking using HOG 37

4.2.1.2 Training the Classifier 39

4.2.1.3 Selecting an image region to initiate search 39

4.2.1.4 Obtained Initial Results 40

4.2.1.5 Filtering the bounding boxes 41

iii

Contents

4.2.1.6 Region Stabilization . 43

4.2.2 Finding the Position of Detected Vehicle 43

4.2.3 Distance estimation . 45

4.2.4 Speed Estimation . 46

4.2.5 Generating Final Simulation . 47

5 Evaluation 49

5.1 Data set . 49

5.2 Experimental Settings . 50

5.3 Evaluation pipeline . 50

5.3.1 Annotated key frames rendering 51

5.3.2 Bounding box creation on annotated frames 52

5.3.3 Intersection Over Union: . 53

5.4 Evaluated Results . 55

5.4.1 Simulation processing time . 57

6 Conclusion and Future Work 59

Appendix A Code 61

A.1 Step-1 . 61

A.2 Step-2 . 70

A.3 Evaluation . 93

Bibliography 99

Eidesstattliche Erklärung 106

iv

Abstract

Self-driving cars are an emerging part of automotive industry and a vital aspect of future.

When it comes to automation of vehicles, that is transferring the control automobile to

software, safety is the biggest concern as it can risk human life. In order to ensure

safety in any driving conditions industry has to maintain some safety standards for the

certification of self-driving cars. It is important to ensure that the software is intelligent

enough to not only handle critical situations but also to predict or address any upcoming

harmful event before deployment to prevent future mishaps. Discovery of test cases

which can disclose the malfunction of an autonomous car is a thought-provoking task

because the possibility of such test cases is infinite. Hence, one technique to analytically

examine the autonomous cars safety is the simulations which are executed with no risk,

no harmful condition and fast execution. Automatically generating driving simulations

from real world driving videos could reduce time consumption of testers by manually

creating different driving simulations. The intend to generate simulations from freely

available videos will help testers to understand how the self-driving car would perform

in similar situations. My thesis addresses this problem and define a new method to

automatically generate driving simulations from commonly available geo-tagged videos

recorded during driving. The process uses the GPS data to identify the roads in which

the recorded driving took place, recreates those roads in the driving simulation, and

configures the ego car to drive as the original car was driving in the videos. Next, the

v

Contents

videos are analysed using a machine learning classifier to identify leading cars by means

of bounding boxes, their relative position and speed w.r.t. the ego car. Finally, a driving

simulation reproducing the movement of the ego car and (one) leading car in front of it

is generated. Evaluation results obtained by analysing randomly selected driving videos

show that the proposed method is efficient and produce reasonably accurate simulations,

suggesting that the proposed method is viable and can pave the way for future self-

driving cars testing by providing an efficient tool to support testers in developing safe

self-driving cars.

vi

Acknowledgments

I would first thank to my thesis advisor Dr. Alessio Gambi, research assistant at Chair

of the Software Engineering II at University of Passau. The door to Dr. Alessio Gambi

office was always open whenever I stuck in difficult situation or had a question about

my research. He consistently allowed this thesis to be my own work, but steered me in

the right direction whenever he thought I needed it. His guidance played an important

role in not only in fulfillment of research and implementation but also achieving results

with greater accuracy. I would also like to acknowledge Professor Dr. Gordon Fraser,

Chair of Software Engineering II at University of Passau for giving me this opportunity

to work under his chair. Lastly, I would like to thank my parents, friends and siblings

for being supportive in every step I took, which ultimately led me here.

Qazi Mujahid.

vii

List of Figures

2.1 Stages of Autonomy . 7

2.2 Coordinate system in Blender [Com18] 15

2.3 ECEF Coordinate System [Pop14] . 17

4.1 Overview of Step-1 . 27

4.2 GPX segments converted to a pandas dataframe 29

4.3 Speed Normalizing . 29

4.4 Speed at specific point . 30

4.5 Visualizing the Track from GPS data . 30

4.6 Track on OSM . 31

4.7 Normalized Coordinates . 32

4.8 Road geometry . 34

4.9 Road coordinates . 35

4.10 GPS points and Roads . 36

4.11 Way point real vs simulation . 36

4.12 Overview of Step-2 . 37

4.13 Vehicle and Not-Vehicle . 38

4.14 Selecting a region to search . 40

4.15 Initial Vehicle detection results . 41

viii

List of Figures

4.16 Misdetection of a car on the right . 42

4.17 frames and their corresponding heatmaps 42

4.18 Detected car and warped image . 46

4.19 Data frame of resultant values . 47

4.20 Coordinate understanding . 48

4.21 Simualtion and video frames . 48

5.1 data annotation . 51

5.2 annotated frame . 52

5.3 bounding box on annotated frame . 52

5.4 IOU Concept . 53

5.5 Illustration of IOU . 54

5.6 IOU Results . 56

5.7 Procesing time of modules . 57

5.8 Procesing time for generating a simulation 58

ix

1 Introduction

Self-driving cars have been a vibrant component of automotive industry lately and are

expected to gain more importance in future [Gar][PAP13]. When it comes to automation,

safety is a big issue that cannot be compromised.

In self-driving vehicles the software is responsible to take rapid decisions and actions

in possibly chaotic situations. This is where Artificial Intelligence (AI) enters; AI is

all about intellectuality showed by the machines [Li+18][DAG17]. In the present, AI is

expected to be a part of every aspect from smart home appliances to smart cars [Li+18].

In terms of self-driving cars one important question is what are the situations in which

a self-driving car can crash? and how to prevent crashes? This question challenges the

reliability of artificial intelligent applications. To address safety concerns in selfdriving

cars the AI requires making quick and safe decisions because a human life could endan-

gered otherwise.

The automotive industry has not yet established standards to certify self-driving cars

safety [Li+18][Mar+17][DAG17], but research related to this aspect is in development by

different organizations, out of which NHTSA (National Highway Traffic Safety Admin-

istration) [NHT18] is engage in saving lives, eliminating regulatory barriers to advanced

1

1 Introduction

safety technology and promoting safe self-driving technology development. In order to

prevent safety related mishaps, it is important to test autonomous vehicles in normal,

problematic situations before deployment.

Virtual testing techniques have been introduced because the generic software testing

techniques cannot manage the immense amount of situations in which a self-driving car

may involve.

In some cases like Uber car crash[Abc][Theb], The object detection system was not able

to identify a Women, when its sensors first detect as unknown object and then a bicycle.

Therefore Testing in virtual environment can develop valuable results [Ber+13][PGE12].

After planting autonomous vehicles on test in real world scenarios the cars have shown

appealing competency in avoidance of traffic accidents and interpreting there life threat-

ening consequences [Mot16]. For instance, Google autonomous car ran into a bus while

changing lane as the car anticipated that the bus will slow down and give space to the

car, allowing it to join the lane. This indicated that self-driving vehicles can perform

not accurately in less complex situations leading to unpreventable accidental situations.

Searching for such faults in self-driving cars is a very difficult task. Since the amount

of testable scenarios is not finite due to the fact that automated cars are expected to

function safely on various roads, with continuously changing atmospheric and weather

conditions that involves irregular movement of different objects (other vehicles, people

and animals)[Zof+16].

Another incident was reported in March 2018 [usa][Thea][Abc][Theb], when an experi-

mental Uber SUV, functioning in autonomous mode ran into and killed the pedestrian

woman at night in Tempe, Arizona. After the investigation it was found that the self-

driving system detect the two objects (the woman and her bicycle) 6 seconds before the

2

1 Introduction

accident occurred but the engineers had deactivated the cars emergency braking system

in order to decrease the strength of unpredictable behaviors [usa][Thea]. In addition,

the system software was not programmed to prompt the human operator so that he/she

could apply brakes manually. Such an accident could be prevent by reducing the speed

to 90% or by enabling the car to apply brakes, horns as soon as it detects a static object

in front of it or when the object comes under the radius of 10 meters. Another solution

is to prompt the human operator, but this can also lead to human error related mishaps.

In this Thesis, I propose to address the above stated issue can be resolved by generating

simulations from real dash-cam videos and test how self driving car will act under dif-

ferent situations. The video provide tester a clear view of the situation, for this virtual

simulation using 3D Simulation software [Bea18] will be used to recreate the Scenario

virtually and conclude if the cars performs better and takes more intelligent decision

then humans to prevent damages thus the car can be termed better and safe as com-

pared to a human driver in the same situation.

Amongst all the descriptive collected possibilities that includes textual information,

official documents like police reports and sensorial data, I propose consider dash-cam

videos with GPS data. I use the dash-cam videos as my main data source as the videos

are widely available over the internet and has captured accidents occurred on various

locations (highway, streets, flyovers, etc.). Another reason for selecting dash-cam videos

is that they could provide an accurate, clear interpretation of the situations, which lead

to the generation of better tests.

3

1 Introduction

1.1 Research Questions

The automatically generated simulations from videos intent to not only reduce the testers

efforts involved in the creation of simulations manually, but also this will let the testers

build more effective and extensive test collections to evaluate the system ability of self

driving car. Moreover the simulations, which replicate the story line of real scenarios

could produce more test cases by changing situations, such as lighting conditions, by

introducing more cars and the existence or nonexistence of prominent features from

the original video. The objective to generate simulations is to construct several test

situations for testers to try/evaluate the self-driving cars in situations where a tester

can build more test cases through parameter exploration.

1.2 Thesis Organization

In this research the main data source will be dash-cam videos (video recorded during

driving). The dataset of the video includes the GPS information which will be used

in creation of roads using OSM (Open Street Map)[Ope17] then the simulation will be

created with road and ego car. Then the next step is to detect the vehicle in video

frames and estimate the relative speed, distance of the car facing in front of the ego car.

The extracted parameters will be transferred to be executed as the final simulation.

4

2 Background

This section presents a explanation of the insights from the autonomous industry. Firstly,

it introduce some of the terminology regarding the autonomy of self-driving cars, pro-

vided facilities and shared resources. The approach to elaborate the stages of AVs de-

velopment as well as the advancement of technology in vehicles control at various stages

is being discussed. Moreover this section discuss the stages of autonomy, as substantial

fundamentals of the driving intellect. Furthermore, a comparative analysis in various

light, weather and distance described would aid the purpose of research in my domain.

Autonomy in vehicles

Autonomy is being in the condition of self-determining; being decisive and self-dependent.

Application of such concept on cars evolved vehicles which are capable to function with

minimal or zero human interaction, through the implications of AI. Any vehicle with

functionalities that allow it to start, break and function without any driver.

Autonomous vehicle

This describes car able to drive from location A to B with no driver. The autonomous

car is able to travel due to the ability of sensing the surroundings, detection and identifi-

cation of the objects and surroundings. By being proficient in constructing the location

5

2 Background

frames as well as determination of exact location and by utilizing a global positioning

system (GPS) autonomous vehicles would be able to function accurately. Along with

the attributes of Sensing, Mapping and being aware of the Driving policies/rules, the

potential to eliminate the drivers errors, could enhance performance of the an AV as it is

less likely to experiences faced by a human while driving on a road. Yet, there are huge

challenges that could not be over looked and needs to be catered in order to propose

autonomous automobiles with minimal protection hazards to the community.

2.1 Autonomy Levels

The progress of self-driving in stages are presented, which is started from no automation

to fully automated vehicles. These levels are characterized on the basis of functional

ability associated with autonomous driving. Moreover in order to understand the AVs

current market it is necessary to reflect over the types of automation. US National

Highway Traffic Safety Administration (NHTSA) and Society of Automotive Engineers

(SAE) [SAE]. To distinguish NHTSA has a scale of 5 levels for defining automated

driving, while SAE has a 6 stages model. In contrast SAE standard was accepted by

NHTSA. This thesis will describe the SAE standards and the six autonomy levels in

detail.

6

2 Background

Figure 2.1: Stages of Autonomy

2.1.1 Stage 0 - No Automation

Level of automation: In this case, the car driver has complete control over the hor-

izontal and longitudinal dynamics of an automobile. It means that human driver is

accountable for an adequate performance in every feature of driving. Even though hu-

mans are responsible for each action taken in this mode there is no guarantee of accuracy

or zero collision due to human error.

Drivers duty: The driver is liable for the safety procedures possessed by the automo-

bile, has to observe and be conscious of the transportation nearby the car. There is no

7

2 Background

automatic functionalities to transfer the mechanism of the automobile.

Time Period: still present, the orthodox cars were designed requisite human inter-

ference in order to regulate navigation, acceleration, and brake. In the interim, the

car driver is blamable for checking the environments, steering and making preemptive

decisions whenever it comes to turning pointers or adjusting tracks.

2.1.2 Stage 1 - Requirement of Driver as Support

Level of automation: This stage signifies a state where majority of the monitoring has

been accomplished by the driver. Activities like acceleration, brakes could be automated.

this is stated as a traffic flow supporter that retains the automobile in a flow, the car

driver little influence over steering, correction, and braking. At a definite moment, the

control can be transferred to driver assistance system.

Drivers duty: The human driver is considered to be in charge of controlling his vehicle

with the safety procedures and operations but the control could be transferred to system

software occasionally.

Time Period: Already existing. Multiple vehicles have a built-in traffic jam assistant

fall in this category.

2.1.3 Stage 2 - Fractional Robotics

Level of automation: At Stage 2, there are numerous autonomous functions that

are controlled by the system. Actions like lane keeping, automatic braking, and cruise

control. Level 2 is the start of autonomy and it is restricted to particular functions,

8

2 Background

mostly used in highway drives when there is no need to observe and recognize traffic

lights. The core functionalities such as lane keeping and adjustment of steering are

exhibited while driving on highways where applying brake, acceleration or navigation

takes place in correspondence of the vehicles in the surroundings whenever lanes are being

changed. Moreover, in level 2 the control is being transferred to the driver completely

when the system detects object and the features which are not responding. Automobiles

with stage 2 autonomy could be used in outlying regions wherever road infrastructures

are slightly narrow, which makes easy for a system to detect objects easily.

Drivers duty: The car driver is accountable for general regulations applied on a car

and safety processes. Certain parts of the main steering system could be assigned to

auto-pilot mode, maintenance of a continuous speed and the identification traffic signs

and landmarks on the road with respective adjustments could be delegated to the system

at any point. The driver is required to take charge whenever the system faces a situation

when navigation is not possible or complicated.

Time Period: Level 2 is publicly available and has been released for commercial usage.

Tesla being a leading stakeholder in the automation industry has captured a huge market

and is selling vehicles functioning in stage 2 automation.

2.1.4 Stage 3 - Restricted Automation

Level of automation: At level 3, a minimum two key steering systems are programmed

and operated concurrently. For instance, parallel functioning of a lane centering com-

posed with an adaptive cruise. Cars with stage 3 automation are skilled in leading a

vehicle in complex settings in an urban area whenever associated with stage 2 which was

commonly constrained to a freeway. The stage 3 cars are capable to identify and classify

9

2 Background

the road traffic marks, traffic lights which means it can function in built-up regions but

not with 100% accuracy. Similarly, a car with stage 3 autonomy has difficulties while

detecting and distinguishing similar surroundings in changed weather conditions.

Drivers duty: Driver could rely on some of the controlling functions and delegate

some controls to a vehicle. Even then the driver cannot leave the steering as danger

can interrupt the safety protocol at any instance. At present such automation is seen

on highways wherever certain vehicles are able to drive in the driver assistance mode

where as some level 3 vehicles could be driven in inner-city and sub-urban areas. The

navigation requires human interactions and decisiveness.

Time Period: Already available.

2.1.5 Stage 4 - Elevated Automation

Level of automation: At this stage the vehicle is intended to safely operate while

being in the automated mode of driving. In a dangerous circumstance, a driver could

control all safety related functions in order to cope up with the problem.

Drivers duty: The driver shifts to automatic driving only when there is no safety issues

associated. After the delegation of the control to the system, the driver is not required

to get involved in monitoring, observing and can rely on the system until it prompts

an error. The driver can take over the control when the system is not able to respond

properly.

Time Period: Tesla has already released vehicles with hardware currently functional

at stage 4 automation. Such vehicles can confidently steer through the metropolitan

areas and are capable to deal with certain situations without any driver on board as

10

2 Background

well. Protocols and safety policies had not allowed Tesla to publish the revised software

release online which could permit the Tesla to easily update the cars to this stage.

2.1.6 Stage 5 - Complete Automation Accomplishment

Level of automation: This level of automation comprises of a state where driving

functionalities are completely automated and the vehicle is able to perform safely without

human interaction. All the difficult conditions would be managed and detected by the

system. Hardware like steering wheel and all pedals would be removed. Such cars would

be able to navigate deprived of a driver completely.

Drivers duty: The driver would be a passenger, no surveillance and monitoring of

the traffic would be conducted by the driver. The driver would be required to input

a certain destination or some other specifications such as temperature into the system

the passenger can also book or view the current car position through his phone. The

vehicles can drive to any authorized target or pin point on itself showing the decisive

intelligence during the drive.

Time Period: expected in upcoming years.

The removal of human in driving requires functioning with numerous complex technolo-

gies concurrently. Human capabilities for making decisions will be replaced by deep

learning and machine learning. By connecting to a cloud can enable customized features

and models paired with the extraction of continuous meaningful data and operations to

distinguish the basic entities and hindrances close to the automobile. Self-driving car

enactment can involve numerous segments. Subsequently the accomplishment of Stage

5, supervisory authorities will approve production of self-driving vehicles for commercial

purposes.

11

2 Background

Despite of all the shortcomings, the quality of data obtainable by Lidars makes them

a perfect choice in the strategy of most of the autonomous driving industries (Waymo,

Daimler, Audi, Bosch, General Motors). Tesla decided to eliminate the installation of

Lidar sensor on cars. The Waymos self-driving minivans use three type of Lidars, five

sensors and eight cameras while Tesla has mounted eight cameras, twelve ultrasonic

sensors and one forward facing radar [ZF17]. CEO Tesla Elon Musk is firmly induced

that Lidars are avoidable in the development of fully autonomous cars. According to Elon

Musk [Bur19], “Lidars are just props that would drive companies to a naive deadlock

where recovery would be daunting.”

Tesla emphasis that camera sensors combined with radars and ultrasonic sensors could

excel the current performance. This is an extreme choice the enterprise is following

a completely different pathway as compared the competitors; the idea behind this ap-

proach is that enough data is provided by the camera sensors from the surroundings and

consequently allows a car to drive all on its own. To challenge this strategy is difficult.

Humans are perfectly able to drive cars deprived of the ultrasonic, radio or light sensor;

they mostly fail because of the absence of attention, not of information. The hardware

required for the computation and various costly sensors could be eliminated. In this

thesis, image processing and machine learning techniques would be effectively used for

the extraction of relative speed and distance.

2.2 Sensors

The reliance of an autonomous system is based on three blocks:

Perception: to sense the surroundings and defining an illustration of the location.

12

2 Background

Decision Making: to analyze the setting and adopt an action.

Actuation: to execute the previously taken decision.

The observation systems of sensors are formally categorized in two forms: Propriocep-

tive sensors [Fin19] which are respnsible for distinguishing vehicles state like inertial

measurement unit and wheel encoders etc. Exteroceptive sensors are responsible for

identifying of ambience observing devices placed externally like cameras, Lidar, Radars,

ultrasonic, etc. The exteroceptive sensors are significant in autonomous driving they

provide the true definition of the position and setting that is require to aid in precise de-

cision making. The main sensors possessed by this group are exemplified in the following

sections.

2.2.1 Camera

Being the usual and inexpensive sensors, cameras are present in all the models of au-

tonomous cars and used in the implementation of many ADAS features. Mono-vision

or stereo-vision are the two common camera based systems which consist of multiple

mono vision cameras that somehow resemble human eye vision. There is a possibility of

having more than two cameras facing a similar measurements for the reconstruction of a

3D image. The development of various features, estimations and actions are dependent

on the placement of cameras some common mounting places for cameras are the front

grilles, side mirrors, and rear door and rear windscreen. Advanced camera systems and

software integrated together could accomplish more than object detection that includes

the accurate determination of object trajectories and enhanced feature classification.

The modern addition in this field is the Mobileye [Mob18], presented by an Israeli sub-

sidiary of Intel collaborating with automakers. The idea behind Mobileye is to make

13

2 Background

computer able to take effective decisions like humans. Camera can have a great impact

on AVs to enable them achieve perception/actuation similar to humans. Explicit and

implicit information shows that if cameras are placed in a range with 360 degree coverage

could comparatively collect meaningful data that is can become the main support for a

motorized sensing suite.

2.2.2 Radar

Radars (Radio Detection And Ranging) utilize radio waves frequencies for the detection

of objects and conclude their range, distance, angle, and/or velocity. Radars can obtain

information of objects that are in the closer radius, the fetched information includes

their distance, mass and speed. Advance driver assistance system (ADAS) can notify

the driver in hazardous circumstances and reliant on the system, they can even trigger

advanced navigation or braking. Additionally Long-ranged radars can provide coverage

of approximately 200 meters at a higher speed whereas short-ranged radars are slower

and are used for sensing the surroundings within or nearer location of the vehicle present

in a range of 30 meters. Short-ranged radars are beneficial in the implementation of

Blind Spot Detection, lane adjustments, collision prevention, parallel/adjacent traffic

monitoring, distance control automation etc. Radars with high-precision and weather

diagnostic are the must have features for any autonomous vehicle and prototype.

2.3 Coordinate System

The transmission of state information and entities existing in the real world is termed

under DIS (Distributed Interactive Simulation) [12]. The most essential state of infor-

mation is generally the information about where the entities are located and in which

14

2 Background

direction they point. This arises question: which coordinate system would be helpful to

define an entity’s location. GPS uses geographically accurate coordinate system which

are named as geodetic coordinate system, to account for the shape of the earth, while

the simulator makes the simplifying assumption that the Earth is flat, so it uses a basic

Cartesian coordinate system.

2.3.1 Game Coordinate system

The technology is used in military simulation application are similar to the once used

in gaming engines, so the solution provided and applicable in games to illustrate real

world direction can be useful to understand the above coordinate system problems. The

graphics packages used as high coordinate system to position objects and then create

draw them in Blender [Com18] 3D tool screen depicts a simpler situation, a cube that

sets of a few unit from the origin of universal coordinate system, the general coordinate

system origin depicted by intersection of red and blue lines as showed in figure 2.2, the

cube has a set of local coordinate system at the very center.

Figure 2.2: Coordinate system in Blender [Com18]

15

2 Background

2.3.2 Coordinate Systems in Real World

When we are trying to describe the position of entities in the real world we have a

less pleasant situation. Entities are placed on the earth’s ellipsoid-shaped surface, their

placement is worse than using a perfect round sphere. More realistically models used in

naval warfare would not allow us to see a ship 100 km away from it would be below the

horizon. Using a solo, cohesive, uniform coordinate system would also not be realistic to

conduct across a large geographic scale. The gamers approach of using a flat coordinate

system for a plane world could not function either because the actual world is not flat.

The Army often uses Military Grid Reference System (MGRS) [dat] to designate the

spot of units, as mentioned, a game graphics package is used to describe the position

of entities and the graphics system coordinate system is Cartesian. For example a sim-

ulated automobile driving through a town, is being induced and rendered in a game

engine that uses a conventional Cartesian coordinate system being characterized as flat

and rectilinear, using the web as a foundation of place data for real objects in the world,

like Google Maps can verify those points termed in latitude, longitude, and altitude.

In order to search that while being inside the game it should be properly simulated

through satellite the position of that satellites orbit may be described using Keplerian

orbital elements [Lho] for the arrival to designation specified in MGRS. Concurrently

the curvature of earth could not be ignored. Cartesian coordinate system along with the

origin at the center of the earth while using meters as the unit of measurement.

In this coordinate system the X-axis points out from center of the earth and crosses

the surface of the earth at the prime meridian and equator. The Y-axis meets the

earths surface at the equator at 90 degrees on east longitude and Z-axis points to the

16

2 Background

North Pole. This coordinate system switches with the earth; it is “Earth-Centered,

Earth-Fixed” (ECEF) [Pop14].

Figure 2.3: ECEF Coordinate System [Pop14]

The simulation presented in this research can use suitable coordinate and would transmit

its entity positions to other simulations using the geocentric coordinate system [Pop14].

The necessity is a way to convert to and from our internal coordinate system to the

global geocentric coordinate system. The gain of using a geocentric coordinate system

is it could convert it to and from other general coordinate systems. There are equations

to convert and from a position defined with latitude, longitude, and altitude to the

geocentric coordinate system and vice versa.

2.3.3 Standard Problems in Coordinate System

Although the geocentric coordinate system basis is placed at the center of the earth,

the coordinate system does not define itself where the surface of the earth is actually

located. There are several mathematical models, called “datums” used to describe what

17

2 Background

the shape of the earth is because the earth is somewhat flattened and an egg-shaped

surface, usually in the form of an oblate spheroid. Model WGS-84 [Jan09], which is also

the model for the shaping of the earth used in GPS which is not exact; the real world’s

mean sea level can differ from the geoid defined by WGS-84 by 0-5 meters but replica-

tions that are modeling kinetic weapons involve high precision for entity locations.

The usage of different datums also causes the models to differentiate in the shape of

the earth. The latitude and longitude lines are fixed to the surface of the earth through

models and maps are using different datums. The datums define two diverse 3D surfaces,

entities labeled with the same latitude and longitude will be in two different settings in

3D space depending on the datum the map uses latitude and longitude.

There are computational problems, using units of geocentric coordinate system values

could exceed six million meters that causes some numeric precision problems if using

single precision floating point numbers. Thus it is required to convert coordinate systems

discussed below could consequence in the termination of computational errors.

2.4 Open Street Map (OSM)

It is a utility that is helpful to generate an alterable map free of cost. This project

helps in the generation of such data as primary output that aids in the navigation of

satellite devices and provide prominent geographic information across the globe. The

Open Street Map is inspired by the prevalence of patent map data amongst the world

in order to outsource collected data in a usable format. Due to the availability to OSM

replacement of default data with GPS has been comparatively favorable for this research.

18

2 Background

2.4.1 Production of Maps:

Using OSM the collected map data from GPS units, cameras and sensors is added to

the database of OpenStreetMap afterwards manual editing and automated imports are

used for data preprocessing.

2.4.2 Street-level image data:

Similarly, numerous altered sets of satellite images are accessible to OSM editors, data

from street-level image are available as map data photo covers, Bing Streetside 360◦ and

the OpenStreetCam platforms as well as smartphone, mounted camera images. A traffic

sign data layer can be enabled to enhance user-submitted images.

2.4.3 Data storage in OSM:

The OSM data is stored and managed in diverse formats. The main file of the OSM data

is deposited in OSM’s database this database is a PostgreSQL database with PostGIS

extension, having a single table for every data primitive, with discrete objects stored as

rows, updating and manipulation happens in this database after which other formats

are generated from it. For transferring data, database dumps are made, which could be

downloaded. The whole dump is called planet.osm. These dumps occur in two set-ups,

one using XML and one using the Protocol Buffer Binary Format (PBF).

19

2 Background

2.5 Histogram of Oriented Gradients (HOG)

HOG is a feature descriptor used for image processing, primarily for object detection

and was developed by dallal et al.[DT05] and they use hog for human detection. HOG

splits the image into tiny cells, HOG is calculated for each cell, the block pattern is

used to normalize the HOGs and descriptor is provide for each cell. The features are

used to detect objects in an image. The presence of local objects within image is define

by the distribution of intensity gradients. This process involve measuring the frequency

of gradient orientation and thus preserving photometric transformations and geometric

invariances. The generation of descriptor consists of four steps: gradient computing,

orientation binning, generation of descriptor blocks, and block normalization.

2.5.1 Linear Support Vector Classifier (SVC)

Linear-SVC [Ped+11] are classes that are able to performe a multi class dataset classi-

fication. The classifier is identical to SVC and by using kernel = ’linear’ parameter and

it is therefore flexible while choosing of penalties, loss functions and is well suited to a

large number of samples. The class assist dense, sparse input and multi-class is handled

by a one-on-the-rest scheme.

2.6 BeamNG

For the providence of organized inputs into a simulator, the system manages inputs and

replicate steps accordingly. The BeamNG representations/setups of Road, Automobile

or objects. The syntax of the BeamNG entity constructor has an appropriate and

20

2 Background

graspable interface to manage and store the properties/attributes of the states and

involving objects, as well as the moving paths which are necessary to recreate the visual

scenarios. Using BeamNG software more enhanced, realistic atmospheric recreation is

possible by including various objects that may include buildings, trees, sign boards and

other moving or static bodies on particular positions inside simulation. Such simulations

would help the testers in understanding the background of the scenarios and clarify the

factors that contributed in the occurrence of the crash.

21

3 Literature Review

Road Event and Activity Detection: The most related research with my proposed

method was publish in July 2018 in which a latest Road Event and Activity Detec-

tion (READ) [Fon+18] dataset was structure and generated from purely the perspective

of an autonomous vehicle; to resolve action detection challenges in autonomous driving.

READ gave researchers in computer visualization, automated cars and machine learning

a huge the chance to conduct research in complications such as resolving complex (road)

activities, understanding the behavior of conscious agents, forecasting both labels, their

placement for future movements and events, in order to support self-governing decision

making capability.

Simulation of real crashes: A system was developed by Erbsmehl [Erb09] for the

simulation of behaviors of cars with or without a protective safety application, given

as a crash scenario which had been retrieved from GIDAS (German In-Depth Accident

Study) database. Similarly to my approach, the approach proposed by Erbsmehl aims

to reconstruct realistic driving situations. However, different than my approach, it relies

on the availability of sensor data which, in practice, are yet extremely hard to collect.

Although, my system objectives is to generate test cases from actual car videos, and not

from the actions of self-driving car in the simulated environment, so I would not include

22

3 Literature Review

the implementation of the simulations for the safety system, sensors of autonomous car

in my Thesis.

From virtual to reality: Others proposed approaches [Zof+16][Gru+14][Ber+13] to

test self-driving car in simulated/virtual environments. In these studies, the modules

of autonomous cars/ADASs are demonstrated using 3D systems. Then various traffic

setups were provided to the simulator, and the self-driving cars/ADASs performances

and features were examined under the given situations. My system would also support

this methodology, by introducing test settings for video recorded traffic accidents into

the 3D simulation platform. After which, testers would be able to confirm whether

the avoidance of the accidents involving autonomous car/ADAS models in similar crash

scenarios.

Efficient scene understanding for intelligent vehicles: Another related approach

published in 2013 was to use different high and low-level sensory cues to model uncer-

tainties as well as contextual, spatial and semantic relations between objects [Spe+13].

Incorporating the use of spatial configuration of local vision features greatly improved

the robustness of scene understanding approach. The authors also introduced a depth-

first message passing scheme, which when applied to several difficult real world scenarios

showed robust results and real-time efficiency [Spe+13].

Toward Driving Scene Understanding: Another applicable effort adjoining the pos-

sibility of READ was proposed by V.Ramanishka [Ram+18] in 2018, who also dealt with

the behaviors and procedures of the traffic environment. The authors bound themselves

to the performance of the driver besides detecting the events involving other cars.

23

3 Literature Review

Traffic situation assessment by recognizing interrelated road: In 2012 another

research focused on sensitivity analysis on Bayesian Networks [PGE12] for controlling

the recognition process on the basis of retrieve information. This led to a process in

which a situation was observed in increments, concentrating on most significant sensor

measurements. The proposed method was evaluated on a simulated inner-city scenario

where it constantly recognized the affecting entities of each road user Instead of the clas-

sification of a whole situation; the individual vehicles were examined to a limit to which

entities regulate their behavior. This approach decomposed a situation into multiple

parts, each part consisting of a road user and all entities affecting its behavior. Spec-

ification of such structure was termed as a configuration defined by the participating

entities and the affected entity tagged as reference entity[PE12].

A Novel Key Frame Extraction Approach: Gharbi et al. [GBZ16] proposed a basic

procedure for video key frame extraction which is based on interest point description

and repeatably measurement. The goal of the key frame extraction is to convert the

entire video to a small number of representative images that preserve the content of the

video while removing all redundancy.

Dynamic Scene Understanding for Behavior Analysis: The paper presented in

2014 determined two ways to identify the scene/state dynamically one using the abrupt

movement analysis and second using the previously learned movements [BSV14]. The

trajectories for training were represented as a sequence of symbols by considering crossed

zones in the scene, speed, and shape. They proposed an efficient kernel-based clustering

algorithm, for obtaining groups of normal routes. Investigations were conducted over

three standard data sets, confirmed the effectiveness of the proposed approach.

24

3 Literature Review

A Deep Neural Network Architecture: Incredible work done by Paszke et al.

[CKC16] on Semantic segmentation Using ENet architecture. The semantic segmenta-

tion algorithm is used to divide the image into meaningful parts while, at the same time

linking each pixel in the input image to a class label road, car, person, bus etc. Paszke

et al. [CKC16] trained the dataset on the Cityscapes Dataset [Cor+16], a semantic,

instance-wise, dense pixel annotation of 20-30 classes.

A Survey of Current Trends in Autonomous Driving: Guillaume et al. [Bre+17]

conduct a survey of the Simultaneous Localization And Mapping (SLAM) field while

considering the recent evolution of autonomous driving. They present the limits of

classical approaches for autonomous driving and discuss the essential criteria use for

this kind of application.

Ontology based context awareness for driving assistance systems: Armand et

al. [AFI14] implemented an Ontology to create an information base for ADAS for the

identification of the setting of the roads, how the observed object on the road are ex-

pect to act, and what are the concerns/limitations of these actions; hence the ability of

the ADAS system regarding context awareness had been improved. Also, Zhao et al.

[Zha+15] designed an Ontology for ADAS that contains information about street map,

traffic guidelines, vehicle characteristics and controls. The mentioned work is the knowl-

edge bases which were involving the specification of the potential actions and vehicle

properties which had been traveling/moving on the road could be applied on my system

to specify the activities and attributes of actors involved in the video.

25

3 Literature Review

I believe that besides being fully aware of activities done by supplementary road users

it is also required that an self-directed car navigates successfully even in multifaceted

road situations. Thus my approach is to test the self driving car ability in virtual world

by utilizing the simulations created from real world videos.

26

4 Methods

This section is divided in two steps, Step-1 includes the setup for creating the simulation

using GPS information, the conversion of GPS coordinates into cartesian coordinates,

extracting road geometry, normalization of car coordinates and the simulation with road

and ego car. Step-2 starts by detecting vehicle in each video frame, creating bounding

box to get the pixel information of each frame, finding the distance from the detected

vehicle travelling in front of the ego car and speed estimation of detected vehicle.

4.1 Step-1

Figure 4.1: Overview of Step-1

27

4 Methods

4.1.1 Converting GPS format to GPX

In order to extract the selected information from raw dataset, I had created a text file to

increase the usability of the records i.e. the GPS Coordinates. After which I uploaded

the self-created text file on an online GPS visualizer that ensures customizability for the

conversion of the provided data into the GPX format automatically. The uploading of

the GPS Coordinate text file on the online visualizer is only effort that is needed.

GPS Visualizer: GPS Visualizer [Sch], an extremely customizable online and free

utility that generates maps and their respective profiles using the geographic data. The

input is the GPS data i.e. tracks and geographic points. Additionally the street land-

marks, lane numbers and drive ways or coordinates. This tool can easily visualize geo-

graphic data (scientific interpretations, instances, business sites, consumers, real estate,

geo labeled photographs, etc.).

4.1.2 Visualizing the GPX File

This imported file would be further divided into customized data frames for the better

depiction of the retrieved and converted data file into GPX format. This data frame

would consist of coordinate mainly latitude, longitude, altitude and time which is set as

index.

28

4 Methods

Figure 4.2: GPX segments converted to a pandas dataframe

4.1.3 Speed Normalizing

In the speed we have values with 0.00 m/s which means when the vehicle is at stationary

point at signal or traffic congestion, normalizing is used to replace the 0.00 m/s values

with 1.0 m/s because the simulation software BeamNG [Bea18] does not support the

zero values.

Figure 4.3: Speed Normalizing

To visualize speed at specific point I had used matplotlib plotting library

29

4 Methods

Figure 4.4: Speed at specific point

4.1.4 Plotting a Segment

I had checked visually that the extracted coordinate are correct by comparing them

with the map as showed in figure 4.6 , A track on which a car travel can be seen in the

following figure 4.5, on x axis is the longitude and y axis as latitudinal values extracted

from GPS data.

Figure 4.5: Visualizing the Track from GPS data

30

4 Methods

For plotting the track on Open street map 1 [Ope17] I had used mplleaflet which Converts

Matplotlib plots into Leaflet web maps. mplleaflet is written and maintained by Jacob

Wasserman [Was]. The figure 4.6 contains the red points which are nodes and the edges

represent as ways.

Figure 4.6: Track on OSM

4.1.5 Transformation of Geodetic Coordinate System to Geocentric

Coordinate System

Using latitude, longitude, and altitude is quiet common to locate the objects and entities

but we have to convert latitude, longitude to the geocentric coordinate system. For this

complex conversion (”Earth-Centered, Earth Fixed”) coordinate system technique in

used. In equation, N is the radius of curvature in the prime vertical where ϕ is latitude,

λ is the longitude and h represents the height. Equation 4.1 and 4.2 is described in GPS

Satellite Surveying [15].

X = (N + h) cosϕ cosλ (4.1)

Y = (N + h) cosϕ sinλ (4.2)

1www.openstreetmap.org

31

4 Methods

Due to the large values of coordinates after conversion from geodetic coordinates, I scaled

down the values by subtracting the minimum longitudinal value from the array of rest

longitudinal Y values and same procedure goes for latitude X. The values are shown in

Figure 4.7: Normalized Coordinates

4.1.6 Road Geometry

For extracting road coordinates I had used Overpass API 2 [Olb], The Overpass API is a

non-customizable read-only API that aids conventional nominated fragments of the OSM

map data. Performing as a database through the web where the user sends a query that

enables to the API to fetch dataset that relates to the requested query. Comparatively to

the standalone APIs which are boosted for editing, Overpass API is optimized for clients

who requisite limited elements within a preview designated by searching conditions like

location, type of objects, tag properties, vicinity, or their combinations. Overpass API

aids as a backend database for many services. Overpass API consists of a stron query

2https://wiki.openstreetmap.org/wiki/Overpass_API

32

4 Methods

language with extensive features as compared to the former XAPI based tools. Overpass

QL guide/language reference is suggested utilize features via overpass turbo, a usable

Web-based frontend. For legacy apps, a compatibility layer is available that allows

a leveled transition from XAPI. Apart from above mentioned features there are some

constraints as well. Size of an Overpass API query outcome is only identified when

the download is done. It is difficult to provide an ETA while downloading, vigorously

produced files from Overpass API normally cause more time to generate and download

as compared to downloading static abstracts of the same region, whenever to extract

country-sized regions with data the usage of planet.osm is recommended. Overpass API

is useful where amount of required data asserts the selection of data obtainable in that

region.

4.1.6.1 Pre Processing:

Giving a query to Overpass API which includes (minimum latitude, minimum longitude,

maximum latitude, maximum longitude) and the roads except path, track, cycleway and

footway as shown in listing 4.1 from GPS data that creates a bounding box on OSM

and fetch all the road properties e.g. name, type, width saved in a .txt file showed in

figure 4.8.

1 result = api.query("""

2 way("""+str(coords['lat'].min())+""" ,"""+str(coords['lon'].min())+

""" ,"""+str(coords['lat'].max())+""",

3 """+str(coords['lon'].max())+""")[highway ~"."]

4 [highway !~" path|track|cycleway|footway "];

5 (._;>;);

6 out geom;

33

4 Methods

7 """)

Listing 4.1: Query for extracting road geometry

Figure 4.8: Road geometry

After extracting road properties, I convert the coordinates into cartesian coordinate as

described earlier. If the width is not available in some roads than the width would be

according to number of lanes on a road.

34

4 Methods

Figure 4.9: Road coordinates

4.1.7 Simulation and controlling of ego car

After extracting the road geometry, the next step is to visualize the roads in Beamng

and for creating the road we need the parameters to be define which are included in road

objects i.e. (x, y, z, width of roads), road material, texture length. To generate the path

for ego car we need the way points (x, y, z) represents the position, speed from one way

point to another which are extracted from GPS data, rotation at first way point. Figure

4.10 is the depiction of roads created in simulation using GPS coordinate on which the

vehicle would navigate.

35

4 Methods

Figure 4.10: GPS points and Roads

Figure 4.11 shows the trajectory of ego car in simulation and real coordinates, it is easy

to understand that the way points look similar, which shows that the translation of

coordinates work perfectly.

Figure 4.11: Way point real vs simulation

4.2 Step-2

Step-2 begins by detecting vehicles using the HOG object detection technique, creating

a bounding box around the vehicle. Estimating speed and distance using image trans-

formation, bounding box velocity, generating path for other vehicles with reference to

36

4 Methods

ego car coordinates and final simulation with road and the vehicles traveling in front.

Figure 4.12: Overview of Step-2

4.2.1 Vehicle Detection

As mention in step-1 the simulation was created with ego car alone and to include other

cars traveling in front of ego car, this requires as first to detect them from the frames.

I utilize the object detection techniques used in [Naw15] [Taw17] and following are the

steps for vehicle detection.

4.2.1.1 Object tracking using HOG

Initially all the vehicle and non-vehicle images were read using the dataset [GLU12].

Below is an example of each class of vehicles and non-vehicles:

37

4 Methods

Figure 4.13: Vehicle and Not-Vehicle

The process for calculating HOG starts with image which is divided in a number of cells

and for each cell the orientations are binned. Initially, we create features for car and not

car. The process starts by computing the image gradient in x and y direction, finding

magnitude of gradient and the direction of the gradient. The direction of gradient and

magnitude is further employed to histogram of gradients with bins. Normalization is

done on the histogram vector within a block.

Dividing each element of the vector give us the normalized vector. The final feature

vector is calculated from entire image patch and one vector is formed by concatenating

the vectors. In this stage, various colored spaces (YCrCb, RGB, HSV, LUV) and hog

parameters have been explored such as (orientations, pixels in each cell and cells per

block). After which images were obtained randomly from the two classes i.e. vehicle

and non-vehicle distinctively and exhibited likewise to demonstrate the skimage.hog()

[Wal+14] output resemblance. The color space and HOG parameters set of 8 orientations

and (8,8) pixels per cell, (2, 2) cells per block using the YCrCb color channel. Numerous

combinations of parameters were randomly tested after which color space of 8 pixels per

cell with 18 orientation directives for the gradients had been chosen and a 16x16 spatial

binning size and 2 cells per block setting was considered for best results.

38

4 Methods

4.2.1.2 Training the Classifier

The classifier is trained on vehicle and not vehicle features with parameters (color space,

Spatial binning dimensions, histogram bins, orientation for HOG, pixel per cell, cells

per block, hog channel, spatial features, histogram feature, hog feature). The training

was achieved through the supervised classifier linear SVC 3 (Support Vector Classifier)

[Ped+11] using a combined feature vector features of HOG, spatial features, and a

histogram of color features across all three channels of YCrCb [Jia+13]. The special

features were altered to resize the image to 16x16 pixels by utilizing the resultant color

values for each pixel. The three featured vectors were combined and normalized for every

single training image. Training images were further categorized as either each containing

of a car or not. Moreover, Linear SVC was trained with a ratio of 80% of samples, the

resulting 20% were used to validate the results. The accuracy in correspondence of the

validation set was 98%.

Classifier Accuracy

Linear-SVC 0.98

Table 4.1: Linear-SVC test accuracy

4.2.1.3 Selecting an image region to initiate search

This step started off by utilizing a sliding window approach, the features are used to

search a vehicle for each region were calculated by creating a function with parameters

(image, starting position in Y direction, stop in y direction, scaling, classifier (svc),

scaling in x, orientation, pixel per cell, histogram bins, cell per block, spatial size) that

can extract features using hog sub-sampling, It can make predictions and evaluated

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

39

4 Methods

against the trained model. The technique to create a window of subset of the image was

achieved, after which it was moved through some standard offset, often overlapping the

previous window. A trade off was being observed in between the accuracy and time, as

many of the windows would be much expensive to evaluate.

Figure 4.14: Selecting a region to search

After this, another efficient approach was taken that involved the extraction of features

once from a subregion of the image below the horizon. Furthermore it was subsampled

with the region by overlaying windows. Each window was scaled over different factors,

so that multiple box sizes could be tested efficiently.

4.2.1.4 Obtained Initial Results

Five scales using YCrCb 3-channel HOG features plus spatially binned color and his-

tograms of color in the feature vector were searched. Below is the image for the depiction

of the above process:

40

4 Methods

Figure 4.15: Initial Vehicle detection results

Some false positives occurred occasionally, bounding box on the boundary of the road

as shown in figure 4.15.

4.2.1.5 Filtering the bounding boxes

To remove noise created by overlaped bounding boxes with different scaling factors from

the list of candidate boxes, a heat map was created. In order to identify individual blobs

in the heat map scipy.ndimage.measurements.label() [Wal+14] was used. Each

bounding box had a single vote, combined with other boxes to increase the likelihood of

car detection. Threshold operation was performed by setting the Zero pixels below the

threshold heat_map[heat_map <= thres] = 0. This was resulted in a non-detection of

a car when only one box was found several times as shown in the following figure 4.16.

41

4 Methods

Figure 4.16: Misdetection of a car on the right

Below in figure 4.17 presenting the heatmap from a series of frames obtained through

different dash cam videos, the results and the bounding boxes overlaid the last frame of

video.

Figure 4.17: frames and their corresponding heatmaps

42

4 Methods

4.2.1.6 Region Stabilization

For coherence, a running list of bounding boxes over multiple frames was created for

which each of the average color and dimension of the box were tracked. When a new

candidate box on each frame was obtained it was matched with a previous box by position

and dominant image color, the interpolation towards the new box was implemented.

The determination of velocity in X and Y was included that was supposed to update the

center of box in each frame. The combination of the above mentioned policies flattened

the position and dimensions of the car bounding boxes.

After doing the experiments, the settings are applied on the videos with focus on one car

travelling in front that gives the pixel values of the bounding box on each frame which

are further used to find the distance and speed.

4.2.2 Finding the Position of Detected Vehicle

To find out the distance between the ego car and detected car by means of bounding box

we consider to calculate the distance using geometrical image transformation methods.

For the transformation of image the concept geometrical transformation of 2d images

are used, which states that the image content will not be changed but it will deform the

pixel grid and further map the deformed grid into the image destination. The mapping

takes place in the opposite order, from destination to source.

Transformation of perspective-projection is important in computer vision and is com-

monly used for gain desired computer screen presentation. It can change the sight to

make it more realistic. In transformation, there are two types of projection of views that

43

4 Methods

are parallel and perspective projections. Parallel projections are the image transforma-

tion with the coordinate location into parallel lines. The transformation of the images

into the view plane along lines converging to a point [J F] and a more realistic view.

I had use cv2.getPerspectiveTransform() fuction from [Bra00] which states that the

transformation of the viewpoint will be calculated and where the pixel will shift after

the transformation from the original image with the coordinates (u, v). The point with

the coordinates (uw, vw) would be the destination of that pixel on the warped image as

showed in figure 4.18. The calculation of the new position is formalised as:


uw

vw

1

 = sH


u

v

1

 (4.3)

In equation 4.3 H is the homography matrix that maps the points in one image to the

corresponding points in the other image.

After the calculation of perspective matrix next is to determine the center point of

bounding box in x and y directions. In equation 4.4 Xc is the center point in x and

in equation 4.5 Yc represents the center point in y direction. x1, x2, y1, y2 are the

bounding box values in pixels.

Xc =
x2− x1

2
+ x1 (4.4)

Yc =
y2− y1

2
+ y1 (4.5)

44

4 Methods

In our case we calculate the perspective matrix by taking an image as input, giving the

source, destination point M = cv2.getPerspectiveTransform(src, dst) and warped

the image using warpPerspective() from opencv which will straighten effect of per-

spective transformation.

4.2.3 Distance estimation

After calculating the center points and Perspective matrix we can find the pixel pair

in transform space x and y by using transform matrix with parameters pixel in x,

y,perspective matrix, for finding the position of the vehicles from video frames I had

straighten the image from bounding box center till the hood of car as showed in figure

4.18, there is a direct correlation between the pixel position and distance in meters, so

the distance between the calculated position of the midpoint which is the pixel pair in y

direction denoted as py and pixel per meter Pm, ws represents the warped size will give

us the distance between the mid point and the image destination represents the distance

between the bounding box and the ego car.

d = ws −
py
pm

(4.6)

45

4 Methods

Figure 4.18: Detected car and warped image

The distance is estimated on every frame e.g. if the time of video is 20 seconds with fps

25 then in 1 second 25 times the distance will be calculated.

4.2.4 Speed Estimation

By looking how that distance changes from frame to frame, relative speed estimation

was included using the bounding box velocity corresponding to the current vehicle speed.

The vehicle speed in each frame is calculated using the vehicle position in each frame,

the vehicle moving in consecutive frames gives us the velocity estimation in y direction

vele and which is calculated as:

vele = py − Yc (4.7)

Where py is the pixel pair in y direction and Yc represents the center point of bounding

box. After calculating the vele, we can determine the speed by knowing how far is one

46

4 Methods

pixel and this is considered by warped size multiply the number of pixel in meters pm.

As the ego car speed es is known at every frame we can calculate the relative speed by

the equation:

V = es + (vele + pm) (4.8)

Figure 4.19: Data frame of resultant values

The extracted values of speed and distance in each frames are merged by taking average

over frame per second and further used for creating simulation.

4.2.5 Generating Final Simulation

To generate the simulation with leading car in front, we need to calculate the way points

for the car travelling in front of the ego car. For this, we use ego car way points which are

extracted from GPS data and than converted to cartesian coordinates. The coordinate

y represents the front direction of ego car, z is static to 0 as we assume that the ground

is flat, x represents the rotation of the vehicle and in our case we are adding the distance

in y coordinate of ego car i.e. y + distance at frame 1 which was extracted in meters in

the previous section.

47

4 Methods

Figure 4.20: Coordinate understanding

After extracting the distance, speed and other car coordinates which are essential for

creating the simulation with multiple vehicles, Ego car coordinates and roads were used

from step-1, the way point and speed for the other vehicle are parsed to beamNG. Figure

4.21 represents the frame from video and simulation.

Figure 4.21: Simualtion and video frames

48

5 Evaluation

In this section, the Approach through which accurate results and structures are dis-

cussed, by which final results have been achieved. Firstly, I had extracted key frames

every second from the video, then manually annotate key frames to create the ground

truth dataset. Secondly, I had generated the simulation, run the simulation and extract

the perfect pixel annotated images from the simulation every second. I draw the bound-

ing box from the simulation frames and establish the predicted dataset. To compare

bounding boxes between corresponding frames for each test video, I had used IoU to

measure the accuracy between the bounding boxes.

5.1 Data set

For this research I have used the Berkeley deep drive data set 1 [Yu+18] due to the

following supporting aspects:

- The dataset contains the data of almost 100,000 HD videos that cover over 1,100 hours

of drives at different times of days; changing weather plus driving states.

- Videos consists Geophysical satellite locations, time splits and IMU data.

- Videos are annotated with well-defined instance levels/ frames including traffic signals,

1https://bdd-data.berkeley.edu/

49

5 Evaluation

traffic landmarks, people, vehicles and lane markings within the drive able area and

predicable typical driving decisions from 100,000 images.

For this project I have used data columns namely: latitude, longitude, speed, timestamp.

5.2 Experimental Settings

The experiments are conducted by using gaming laptop running with windows 10 and

equipped with MSI gp62, Intel Core i5-6300HQ CPU (2.30GHz), 8 GB of memory, and

an NVIDIA Geforce GTX 960 GPU. In this implementation, simulation are generated

by using BeamNGpy 2 [Bea18] which is an official library providing a Python interface

to BeamNG.research, the research-oriented fork of the video game BeamNG.drive. It

allows remote control of the simulation, including vehicles contained in it, Vehicles and

the environment can be equipped with various sensors that provide simulated sensor

data such as a camera feed, with options for depth values and pixel-perfect semantic

annotation or a simulated Lidar sensor.

5.3 Evaluation pipeline

The focus was to evaluate the similarity and likeliness between the real video and simula-

tion. Firstly, a metric for the evaluation was set to compare the frames at every second by

using intersection over union (IOU). Originally, The berkeley deep drive dataset [Yu+18]

provided the ground truth of 1 frame in each video which cause hindrance to calculate

the similarity in between the remaining frames, to eliminate this problem a Scalable

tool 3 [Yu+18] was used to add the frame annotations of the key frames which aid the

2https://github.com/BeamNG/BeamNGpy
3https://www.scalabel.ai/

50

5 Evaluation

calculation of the remaining bounding boxes. This enabled the creation of ground truth,

Frames are sampled at FPS = 1 which means that 1 frame per second. The duration

of the videos lies between 20 and 40 seconds, frames will be annotated and further used

for evaluation. In figure 5.1 a car with bounding box containing labls x1, y1, x2, y2 can

be seen.

Figure 5.1: data annotation

5.3.1 Annotated key frames rendering

After the data annotation and labeling of bounding box for each key frames’ ground

truth. Using beamNG, by attaching the camera on the vehicle and setting the camera

parameters showed in table 5.1. Annotated key frames where rendered with correspond-

ing to frame per second. The camera direction, position was adjusted manually while

the focus of view and resolution are adopted from the Berkeley deep drive dataset.

Position (x, y, z) Direction (x, y, z) Resolution Focus of view

(-0.25, 0.78, 1) (-0.25, 10, 1.1) 1280 * 720 60

Table 5.1: Camera parameter

51

5 Evaluation

The resultant annotated key frame extracted from beamNG is showed in figure 5.2.

Figure 5.2: annotated frame

5.3.2 Bounding box creation on annotated frames

The contours was used to indicate the curved line that represents the boundary values

and corresponding intensity, The annotated frame was converted into gray scale and

threshold was applied. The function cv2.findContours() [Bra00] was used to draw

the 2d bounding boxes surrounding the detected car with values x1, x2(width), y1,

y2(height) following the csv format.

Figure 5.3: bounding box on annotated frame

52

5 Evaluation

Moreover, with the obtained ground truth and predicted values, for evaluation IOU

metric [Rez+19] was selected which would help in the differentiation of true and false

prediction and eventually help in acquiring precision, recall.

5.3.3 Intersection Over Union:

The calculation of Intersection Over Union (IOU) is based on the jaccard Index which

measures the difference between two bounding boxes. It needs a bounding box of ground

truth bgt and a bounding box that is predicted bp. The IOU measure the overlapping

area between the bgt and bp, divided by the area of union between bgt and bp.

IOU =
area(bp ∩ bgt)
area(bp ∪ bgt)

(5.1)

Figure 5.4: IOU Concept

The resultant value of IOU i.e. the threshold has to be defined as 0.5 which is considered

a good prediction according to the metric [Rez+19] thus, result were calculated frame

by frame. Figure 5.5 illustrates the results which was required to differentiate the true

and false predictions for which metric IOU was implemented.

53

5 Evaluation

Figure 5.5: Illustration of IOU

True Positive (TP): detection with IOU ≥ threshold (0.5)

False Positive (FP): detection with IOU > 0.1 & < threshold (0.5)

False Negative (FN): detection with IOU ≤ 0.1

True Negative (TN): Is not applicable. It would indicate a misdetection that has

been corrected. There are many possible bounding boxes in the object detection task

that should not be detected in an image, so TN would be all possible bounding boxes

that have not been detected correctly. That’s why the metrics don’t use it.

Precision:

The capacity of a model to extract the relevant objects. It is the percentage of accurate

positive predictions and is given by:

Precision =
TP

TP + FP
(5.2)

54

5 Evaluation

Recall:

Recall is a model’s ability to find all specific cases (bounding boxes for all ground truth).

The ratio of accurate prediction over all significant items in ground truth and is given

by:

Recall =
TP

TP + FN
(5.3)

F1 score:

The F1 score is a weighted average of the precision and recall and when there is no

TN, the f1-score is considered as the accuracy. It shows the ratio between precision and

recall. The formula for the F1 score is:

F1 = 2 ∗ precision ∗ recall
precison+ recall

(5.4)

5.4 Evaluated Results

In figure 5.6 where x-axis denotes the number of simulations and y-axis denotes the IOU

resultant values, here the average value of IOU is above the average threshold 0.5 which

confirms that the predicted bounding boxes are generally closed to the ground truth.

The outliers below 0.1 represent the false negative and the values greater than 0.1 and

below 0.5 are the false positive predictions.

55

5 Evaluation

Figure 5.6: IOU Results

The table 5.2 illustrates precision, recall and f1-score for simulations where it is shown

that sim-1 as the highest precision value 0.78 and sim-4 has lowest precision value 0.68

which concludes that in sim-4 the ratio of positive prediction are less as compared to

sim-1. sim-2 and sim-3 has precision 0.75, 0.71 respectively. The recall of sim-3 and

sim-4 is close to perfection at 1.0 which means there is no false negative in the predicted

values. whereas, sim-1 and sim-2 achieved stable recall values 0.87 and 0.78 respectively.

sim-3 has the highest f1-score of 0.83 whereas sim-1, sim-4, sim-2 has declined f1-score

0.82, 0.81, 0.76 respectively.

Simulations Precision Recall F1-Score

Sim-1 0.78 0.87 0.82

Sim-2 0.75 0.78 0.76

Sim-3 0.71 1.0 0.83

Sim-4 0.68 1.0 0.81

Table 5.2: Table of Results

56

5 Evaluation

5.4.1 Simulation processing time

In figure 5.7 the y-axis represents time in seconds and the x-axis shows the modules

involved in creating the simulation, g f c stands for gpx file creation from raw dataset,

coordinate creation represents c c, r e o is the method of road extraction from OSM,

and bb s d stands for vehicle detection, speed and distance estimation process. bb s d

took comparatively additional time than other modules. The estimation of bounding

box and by analyses of boxplot in figure 5.7 the time taken by bb s d was in between

500 and 550 seconds.

Figure 5.7: Procesing time of modules

In figure 5.8, The processing time involved in the creation of a simulation and efficiency

being calculated by iterations n = 10. Through the obtained values, the occurrence of

the outlier had been observed. During the first iteration the experimental time was much

high as compared to the other iterations. Visualization of the boxplot comprehend that

interquartile range (IQR) was in between 425 and 445 seconds for majority of iterations.

57

5 Evaluation

Figure 5.8: Procesing time for generating a simulation

58

6 Conclusion and Future Work

Simulation for self driving cars is an important aspect for achieving fully autonomous

level. The evaluation of proposed research was primarily based on simulations and

evaluation results shows that the proposed method is efficient and produce reasonably

accurate simulations. The proposed method is viable and pave the way for future self-

driving cars testing by providing a reusable feature set to develop simulations automati-

cally. This simulations could facilitate the tester to generate test cases and examine the

behavior of the autonomous car in real world scenarios which are replicated in form of

simulations and would help the tester to conclude whether the self driving car functioned

properly and took appropriate decisions that were expected in that certain conditions.

The object detection technique used in this research works fair enough but it can be

improved by using the YOLO (You only look once) [Red+15] and the way of calculating

distance from single camera images to objects by assuming that the ground is flat. Under

this hypothesis, two-dimensional data from a camera image is used to model the three-

dimensional universe. In the real world, this is not applicable as the infrastructure of

roads is not flat there are inclined and uneven surfaces that would produce inaccurate

results. The utilization of the recent research [CVI19] enabled us to conclude that the

training of the deep neural network on lidar and sensor measurements provided by open

source dataset for self driving cars could be executed, which would give the efficient

59

6 Conclusion and Future Work

predictions of vehicle distance from the ego car and in the result accurate simulation

will be generated.

60

A Code

A.1 Step-1

1 import json

2 from time import time

3 current_time_ms = lambda: int(round(time() * 1000))

4 start_ts = current_time_ms ()

5

6 # Reading the BDD data to extract only GPS values

7 with open("D:/ Beamng_qazi_data/Thesis_final_code/

Final_evaluation_videos/vid -3 _evaluation_best /88d118af -f4356398.

json") as json_file:

8 data = json.load(json_file)

9 # Creating a list

10 finalGps = []

11 for gps in data["locations"]:

12 temp = []

13 # Getting only the values of lat , long , speed , timestamp

14 for i in ['latitude ','longitude ','speed ','timestamp ']:

15 temp.append(gps[i])

16 finalGps.append(temp)

17 # Creating .txt file and multiplying the speed values d[2] * 3.6

because the speed is measured in mps and GPX visualizer need speed

61

A Code

in kph"

18 for d in finalGps:

19 with open('D:/ Beamng_qazi_data/Thesis_final_code/

Final_evaluation_videos/vid -2 _evaluation/vid -1.txt','a') as f:

20 de = '{},{},{},{}'.format(d[0],d[1],d[2] * 3.6,d[3])

21 f.write(de)

22 f.write('\n')

23 f.close()

24 with open('D:/ Beamng_qazi_data/Thesis_final_code/

Final_evaluation_videos/vid -2 _evaluation/vid -1.txt', 'r') as f:

25 a = f.read()

26 # Now writing into the file with the prepend line + old file data

27 # This is the final .txt file which will be the input in GPS visulizer

" https ://www.gpsvisualizer.com/convert_input" to create the GPX

file

28 with open('D:/ Beamng_qazi_data/Thesis_final_code/

Final_evaluation_videos/vid -2 _evaluation/vid -1_1.txt', 'w') as f:

29 f.write('latitude , longitude , speed , time' '\n' + a)

30 end_ts = current_time_ms ()

31 ts = end_ts - start_ts

32 print("processing_time:",ts)

Listing A.1: json to GPX

1 import overpy

2 import numpy as np

3 from tqdm import tqdm

4 import math

5 import gpxpy

6 import pandas as pd

7 from time import time

8

9 current_time_ms = lambda: int(round(time() * 1000))

62

A Code

10

11 start_ts = current_time_ms ()

12

13 # opening the gpx file to find out max latitude ,min latitude , max

longitude , min longitude

14 with open('Final_evaluation_videos/vid -3 _evaluation_best/vid -3.gpx') as

fh:

15 gpx_file = gpxpy.parse(fh)

16

17 segment = gpx_file.tracks [0]. segments [0]

18 coords = pd.DataFrame ([{'lat': p.latitude ,

19 'lon': p.longitude ,

20 'zalt':p.elevation ,

21 #'speed ': p.speed ,

22 'time': p.time} for p in segment.points])

23 coords.set_index('time', drop=True , inplace=True)

24

25 #Fetching Road geometry from osm using overpass API

26 api = overpy.Overpass ()

27

28 # fetch all ways and nodes by giving (minimum lat , minimum long ,

maximum lat , maximum long)

29

30 result = api.query("""

31 way("""+str(coords['lat'].min())+""" ,"""+str(coords['lon'].min())+

""" ,"""+str(coords['lat'].max())+""",

32 """+str(coords['lon'].max())+""")[highway ~"."][highway !~" path|track

|cycleway|footway "];

33 (._;>;);

34 out geom;

35 """)

36

63

A Code

37 roads = []

38 print('Process started ...')

39 for way in tqdm(result.ways):

40 road = []

41 print("Name: %s" % way.tags.get("name", "n/a"))

42 print(" Highway: %s" % way.tags.get("highway", "n/a"))

43 print(" Nodes:")

44 for node in way.nodes:

45 print(" Lat: %f, Lon: %f" % (node.lat , node.lon))

46 road.append ([float(node.lat), float(node.lon)])

47 roads.append(road)

48

49 print('Process finished.')

50 print(roads)

51

52

53 ## this code will save the coords in final.txt , it is used to convert

the Geodetic coordinates to geocentric

54

55 coords_1 = roads

56

57 # ===

58 ## Run this code which will save the coords in final.txt , it is used to

convert the Geodetic coordinates to geocentric

59 # If there is no altitude remove from the function

60 #def coordinate_conversion(lat , lon , alt):

61 # If altituide is not available commit below line

62 def coordinate_conversion(lat , lon):

63 radian_latitude = lat * (math.pi / 180.0)

64 radian_longitude = lon * (math.pi / 180.0)

65

66 """ https ://en.wikipedia.org/wiki/World_Geodetic_System#WGS84 """

64

A Code

67 b = 6378137.0 # it is a semi major axis

68 fi = 298.257223563 # flatten

69 g = 1 / fi # flatten

70 e_2 = 1 - (1 - g) * (1 - g) # calculating semi minor axis

71 t = b / math.sqrt(1 - e_2 * math.sin(radian_latitude) * math.sin(

radian_latitude))

72

73 x = (t + 0) * math.cos(radian_latitude) * math.cos(radian_longitude

)

74 y = (t + 0) * math.cos(radian_latitude) * math.sin(radian_longitude

)

75

76 return x, y

77 coord_cart_x = []

78 coord_cart_y = []

79

80 def run_test ():

81 calc_roads = []

82 name = "road"

83 count = 0

84 for road in coords_1:

85 values = []

86 for pt in road:

87 x, y = coordinate_conversion(pt[0], pt[1])

88 values.append ([x, y])

89 pass

90 obj = {

91 'name': "{}_{}".format(name , count),

92 'values ': values

93 }

94 calc_roads.append(obj)

95 # print(obj)

65

A Code

96 count = count + 1

97 pass

98

99 np.save('calc_roads_vid_2_2.txt', calc_roads)

100

101 run_test ()

102

103 # This code will return the final road coordinates of roads in meters

104 calc_roads = np.load('calc_roads_vid_2_2.txt.npy', allow_pickle=True)

105

106

107 final_roads = []

108 for road in tqdm(calc_roads):

109 mins = np.amin(road['values '], axis =0)

110 x_min = mins [0]

111 y_min = mins [1]

112 values = []

113 for pt in road['values ']:

114 x = pt[0] - x_min

115 y = pt[1] - y_min

116 values.append ((x, y, 0, 18))

117 obj = {

118 'name': road['name'],

119 'values ': values

120 }

121 print(obj)

122 final_roads.append(obj)

123

124 np.save('final_roads_vid_111 ', final_roads)

125 end_ts = current_time_ms ()

126 ts = end_ts - start_ts

127 print(ts)

66

A Code

128 # ==

129

Listing A.2: Road extraction

1 # # Running the Simulation in BeamNG

2 import sys

3 from time import sleep

4 import numpy as np

5 import beamngpy

6 from scipy import interpolate

7 from beamngpy.sensors import Camera

8 from matplotlib.pyplot import imshow

9 from PIL import Image

10 from shapely.geometry import Polygon

11 from beamngpy import BeamNGpy , Scenario , Road , Vehicle , setup_logging

12 SIZE = 1024

13

14 def main():

15 setup_logging ()

16 beamng = BeamNGpy('localhost ', 64256, home='D:/ BeamNG ') # This is

the host & port used to communicate over

17 scenario = Scenario('xyz_Map ', 'Thesis ')

18

19 vehicle = Vehicle('ego_vehicle ', model='etk800 ', licence='Qazi',

color='Green ')

20 #vehicle1 = Vehicle('ego_vehicle2 ', model='etkc ', licence='Qazi2 ')

21 road_a = Road(material='AsphaltRoad_lanes ', rid='main_road ',

texture_length= '5')

22 nodes = Road_a

23

24 road_a.nodes.extend(nodes)

25 scenario.add_road(road_a)

67

A Code

26

27 # Importing road coordinates from final_road.npy from road_final.py

28 final_roads = np.load('final_roads_vid_1.npy', allow_pickle=True)

29 count = 0

30 # nodes = []

31 for road in final_roads:

32 # name = road['name ']

33 values = road['values ']

34

35 road_obj = Road(material='asphaltroad_laned_nolines ',

texture_length= '5')

36 nodes = values

37

38 road_obj.nodes.extend(nodes)

39 scenario.add_road(road_obj)

40 print(nodes)

41 count = count + 1

42 print(count)

43 if count == 20:

44 break

45

46

47 #vehicle1 = Vehicle('ego_vehicle2 ', model='etkc ', licence='qazi ')

48 orig1 = normalised_coord

49 orig = orig1 [0]

50 #print(orig)

51 speed1 = speed_normalized

52 speed12 = speed1 [0]

53 #speed2 = speed [0]

54 #orig4 = orig1 [35]

55

56 scenario.add_vehicle(vehicle , pos = orig , rot=(0, 0,130))

68

A Code

57 #scenario.add_vehicle(vehicle1 , pos = orig2 , rot=(0, 0,90))

58 #scenario.add_vehicle(vehicle1 , pos = (45.7638938 , -79.08234938) ,

rot=(0, 0, 180))

59 scenario.make(beamng) # The make function of a scneario is used to

compile the scenario and produce a scenario file the simulator can

load

60

61 path = list()

62 for i in range(len(orig1)):

63 orig = orig1[i]

64 speed12 = speed1[i]

65 #speed2 = speed [0]

66 pos = (orig[0],

67

68 orig[1],

69

70 0)

71 speed = speed12

72 print(pos)

73 print(speed)

74 #print('speed ')

75 #print(speed)

76 node = {

77 'pos': pos ,

78 'speed ': speed

79 }

80 path.append(node)

81

82 bng = beamng.open(launch=True)

83 try:

84 bng.set_deterministic ()

85 bng.set_steps_per_second (28)

69

A Code

86 bng.load_scenario(scenario)

87 bng.start_scenario ()

88 vehicle.ai_set_line(path)

89

90 while True:

91 bng.step (28)

92

93 finally:

94 bng.close()

95

96 x = [p[0] for p in orig1]

97 y = [p[1] for p in orig1]

98 # plt.axis('square ')

99 plt.ylim(0, 200)

100 plt.plot(x, y,)

101 plt.plot(x, y, 'ro')

102 plt.show()

103

104

105

106 if __name__ == '__main__ ':

107 main()

Listing A.3: Simulation generating code

A.2 Step-2

1 import cv2

2 import numpy as np

3 import glob

4 import time

5 from skimage.feature import hog

70

A Code

6 import matplotlib.image as mpimg

7 import matplotlib.pyplot as plt

8 from sklearn.svm import LinearSVC

9 from sklearn.preprocessing import StandardScaler

10 from skimage.feature import hog

11 from lesson_functions import *

12 from sklearn.cross_validation import train_test_split

13

14 # Reading vehicles and notvehicles

15 vehicles = glob.glob('vehicles /**/*. png', recursive=True)

16 not_vehicles = glob.glob('non -vehicles /**/*. png', recursive=True)

17

18 print('No. of cars: %d ' % len(cars))

19 print('No. of not -cars: %d ' % len(notcars))

20

21 # Defining a function that will return HOG features and visualizations

22 def getting_hog_feature(img , o, p_i_c , c_i_b ,

23 vi=False , feature_vec=True):

24 if vi == True:

25 feat , hog_imag = hog(img , orientation=o,

26 pixel_p_cell = (p_i_c , p_i_c),

27 cell_per_block = (c_i_b , c_i_b),

28 trans_sqt = True ,

29 visualise=vi, feature_vector=

feature_vec)

30 return feat , hog_imag

31 # Rather calling by one output

32 else:

33 feat = hog(img , orientation=o,

34 pixel_p_cell =(p_i_c , p_i_c),

35 cell_per_block =(c_i_b , c_i_b),

36 trans_sqt=True ,

71

A Code

37 visualise=vi, feature_vector=feature_vec)

38 return feat

39 # Color converting function

40 def converting_color(img , conver='RGB2YCrCb '):

41 if conver == 'RGB2YCrCb ':

42 return cv2.cvtColor(img , cv2.COLOR_RGB2YCrCb)

43 if conver == 'BGR2YCrCb ':

44 return cv2.cvtColor(img , cv2.COLOR_BGR2YCrCb)

45 if conver == 'RGB2LUV ':

46 return cv2.cvtColor(img , cv2.COLOR_RGB2LUV)

47

48 # creating of feature vector using cv2.resize ().ravel () function

49 def bin_spat(img , size =(30, 30)):

50 feat = cv2.resize(img , size).ravel()

51 return feat

52

53 # Defining a function to calculate features of color histogram

54 def color_histogram(img , n_bins =32, bin_rang =(0, 256)):

55 # Computing the color channels of histogram alonely

56 chann_1_hist = np.histogram(img[:,:,0], bins=n_bins , range=bin_rang

)

57 chann_2_hist = np.histogram(img[:,:,1], bins=n_bins , range=bin_rang

)

58 chann_3_hist = np.histogram(img[:,:,2], bins=n_bins , range=bin_rang

)

59 # Concatenating histograms into one feature vector

60 hist_feat = np.concatenate ((chann_l_hist [0], chann_2_hist [0],

chann_3_hist [0]))

61 return hist_feat

62

63 # Defining a function that will extrcat features from list of images

64 def extracting_features(imgs , c_s='RGB', spat_size =(32, 32),

72

A Code

65 h_bins =32, o=9,

66 p_i_c=8, c_i_b=3, hog_chann =0,

67 s_feat=True , h_feat=True , ho_feat=True):

68 # Creating a list that will append feature vectors to the features

69 feature = []

70 # Iterating through a list

71 for file in imgs:

72 file_feat = []

73 imag = mpimg.imread(file)

74 # color conversion if the image is not "rgb"

75 if c_s != 'RGB':

76 if c_s == 'HSV':

77 image_feat = cv2.cvtColor(image , cv2.COLOR_RGB2HSV)

78 elif c_s == 'LUV':

79 image_feat = cv2.cvtColor(image , cv2.COLOR_RGB2LUV)

80 elif c_s == 'HLS':

81 image_feat = cv2.cvtColor(image , cv2.COLOR_RGB2HLS)

82 elif c_s == 'YUV':

83 image_feat = cv2.cvtColor(image , cv2.COLOR_RGB2YUV)

84 elif c_s == 'YCrCb ':

85 image_feat = cv2.cvtColor(image , cv2.COLOR_RGB2YCrCb)

86 else: image_feat = np.copy(imag)

87

88 if s_feat == True:

89 s_feat = bin_spat(image_feat , size=spat_size)

90 file_feat.append(s_feat)

91 if h_feat == True:

92 # Applying color histogram

93 h_feat = color_hist(image_feat , n_bins=hist_bins)

94 file_feat.append(h_feat)

95 if ho_feat == True:

96 if hog_chann == 'ALL':

73

A Code

97 ho_feat = []

98 for chann in range(image_feat.shape [2]):

99 ho_feat.append(getting_hog_feature(feature_image

[:,:,chann],

100 o, p_i_c , c_i_b ,

101 vi=False , feature_vec=True))

102 ho_feat = np.ravel(ho_feat)

103 else:

104 ho_feat = getting_hog_feature(image_feat [:,:,

hog_channel], o,

105 p_i_c , c_i_b , vi=False , feature_vec=True)

106 # Appending new feature vector with the features list

107 file_feat.append(hog_feat)

108 feature.append(np.concatenate(file_feat))

109 # This will return the list of feature vectors

110 return feature

111

112 # Sample size could also be reduced

113 sample_size = -1

114 vehicles = vehicles [0: sample_size]

115 not_vehicles = not_vehicles [0: sample_size]

116 # The color space could be RGB , HSV , LUV , HLS , YUV , YCrCb

117 c_s = 'YCrCb '

118 # This is Orientation for HOG

119 o = 18

120 # Pixel in each cells

121 p_i_c = 8

122 # cell in each block

123 c_i_b = 2

124 # Channels of HOG

125 hog_channel = 'ALL'

126 # The dimension of spetial bining

74

A Code

127 spat_size = (16, 16)

128 # The bins of histogram

129 h_bins = 16

130 # The Spatial features which are boolean

131 s_feat = True

132 # The Histogram features that could be true or false

133 h_feat = True

134 # The HOG features that could be true or false

135 ho_feat = True

136 # maximum and minimum in y direction to search in sliding window

137 y_st_sto = [400, None]

138

139

140 # Vehicle features

141 v_f = extracting_features(vehicles , c_s=c_s ,

142 spat_size=spat_size , h_bins=h_bins ,

143 o=o, p_i_c=p_i_c ,

144 c_i_b=c_i_b ,

145 hog_chann=hog_chann , s_feat=s_feat ,

146 h_feat=h_feat , ho_feat=ho_feat)

147 # Not Vehicle features

148 n_f = extracting_features(not_vehicle , c_s=c_s ,

149 spat_size=spat_size , h_bins=h_bins ,

150 o=o, p_i_c=p_i_c ,

151 c_i_b=c_i_b ,

152 hog_chann=hog_chann , s_feat=s_feat ,

153 h_feat=h_feat , ho_feat=ho_feat)

154

155 X = np.vstack ((v_f , n_f)).astype(np.float64)

156 # Fitting to the column scaler

157 X_scal = StandardScaler ().fit(X)

158 # Applying scaler to X

75

A Code

159 scale_X = X_scal.transform(X)

160

161 # Defining the labels of vector

162 y = np.hstack ((np.ones(len(v_f)), np.zeros(len(n_f))))

163

164

165 # Splitting the data into training and test sets

166 ra_state = np.random.randint(0, 100)

167 x_train , x_test , y_train , y_test = train_test_split(scale_X , y,

test_size =0.2, random_state=ra_state)

168

169 print('By using orientations:' ,o, ",pixel per cell:", p_i_c ,",cell per

block:",c_i_b)

170 print('Length of the feature vector:', len(X_train [0]))

171

172 # Using linear SVC classfier from SK learn

173 svc = LinearSVC ()

174 # The time taken by SVC for training

175 t=time.time()

176 svc.fit(x_train , y_train)

177 t2 = time.time()

178 print(round(t2-t, 2), 'Time to train SVC ...')

179 # Accuracy result on test set

180 print('Accuracy on test set: ', round(svc.score(x_test , y_test), 4))

181 t=time.time()

182

183

184 y_start = 400

185 y_stop = 656

186 scale = 1.5

187 image = mpimg.imread('/Users/qazi/Documents/study/Masters_Thesis/

Thesis_final_code/Final_evaluation_videos/vid -4 _evaluation/vid -

76

A Code

frames /44 f99ac4 -e57d0b77 -0000001. jpg')

188

189 img_output , boxes = search_vehicles(image , y_start , y_stop , scale , svc ,

X_scaler , o, p_i_c , c_i_b , spat_size , h_bins)

190

191 plt.figure(figsize =(20 ,10))

192 plt.imshow(img_output)

193 plt.show()

194

195 ystart = 380

196 ystop = 636

197 scale = 2.5

198 # reading frame from video

199 image = mpimg.imread('/Users/qazi/Documents/study/Masters_Thesis/

Thesis_final_code/Final_evaluation_videos/vid -4 _evaluation/vid -

frames /44 f99ac4 -e57d0b77 -0000001. jpg')

200 print(y_start , y_stop , scale , svc , X_scaler , o, p_i_c , c_i_b , spat_size

, h_bins)

201 img_output , boxes = search_vehicles(image , y_start , y_stop , scale , svc ,

X_scaler , o, p_i_c , c_i_b , spat_size , h_bins)

202

203 print('No. of boxes found:', len(boxes))

204 plt.figure(figsize =(20 ,10))

205 plt.imshow(img_output)

206 plt.show()

207

208 def adding_heat(heat_map , box_lst):

209 # iterating by list of bounding boxes

210 for boxe in box_lst:

211 # Inside each bbox 1 is added

212 # Assuming that box takes standard measuremenst ((x1, y1), (x2,

y2))

77

A Code

213 heat_map[boxe [0][1]: boxe [1][1] , boxe [0][0]: boxe [1][0]] += 1

214 return heat_map

215 def applying_threshold(heat_map , thres):

216 # The Zero pixels below then the threshold

217 heat_map[heat_map <= thres] = 0

218 return heat_map # This will return threshold map

219 def drawing_labeled_box(img , label):

220 # Iterating through all the detected vehicles

221 for vehicle_numbers in range(1, label [1]+1):

222 # Finding pixels correspond to each vehicle_number label value

223 non_zero = (label [0] == vehicle_numbers).nonzero ()

224 # x and y values of pixels will be identified

225 non_zero_y = np.array(non_zero [0])

226 non_zero_x = np.array(non_zero [1])

227 # Illustrate a bounding box based on minimum and maximum x and

y

228 b_box = ((np.min(non_zero_x), np.min(non_zero_y)), (np.max(

non_zero_x), np.max(non_zero_y)))

229 # Drawing box on image

230 cv2.rectangle(img , b_box[0], b_box[1], (0,0 ,255), 6)

231 return img

232

233 from moviepy.editor import VideoFileClip

234 # let us start searching bounding boxes in video which takes video as

input and returns the video with detected vehicles

235 def video_processing(video_input , output , start=0, end=-1):

236 clip1 = VideoFileClip(video_input)

237 clip1 = clip1.subclip(start , end)

238 out_clip = clip1.fl_image(creating_cars_heat)

239 out_clip.write_videofile(output ,audio=False)

Listing A.4: Vehicle detection

78

A Code

1

2 import math

3 import cv2

4 import numpy as np

5 from PIL import Image , ImageDraw , ImageFont

6 import pandas as pd

7 import matplotlib.image as img

8 import matplotlib.pyplot as plt

9 import json

10

11 frameNumber = 0

12 baseSpeed = 0

13 # importing the gps data to extrcat the speed

14 speedList = []

15 with open('0a4ef631 -f8c1e17c.json') as json_file:

16 data = json.load(json_file)

17 for p in data['gps']:

18 speedList.append(p["speed"])

19

20 # function to get our car speed at each frame

21 def getOurCarSpeed(frame):

22 frame = frame / 2

23 print('getOurCarSpeed ', round(speedList.__getitem__(int(frame)), 3)

)

24 return round(speedList.__getitem__(int(frame)), 3)

25

26 their_speed = []

27 distance1 = []

28 myspeed = []

29

30 # To find out the mask point from an image which will give the area of

interest

79

A Code

31 def making_mask(imag_size , # The width and height

32 hori_perc , # The upper threshold which is a percent of

height

33 bott_perc , # The lower thresh which is a percent of

height

34 mask_bott_perc =1.0, # The lower percent of width

35 mask_topp_perc =0.5): # The upper percent of width

36

37 img_wdth = imag_size [0] # image width

38 img_hght = imag_size [1] # image height

39

40 center_X = img_width / 2 # finding the center

41 horizon_in_y = math.floor(hori_perc * img_hght)

42 bottom_y_margin = math.floor(bott_perc * img_hght)

43 bottom = img_hght - bottom_y_margin

44 top = horizon_in_y

45

46 mask_in_bottom_left_x = math.floor(center_X - img_wdth * (

mask_bott_perc * 0.5))

47 mask_in_bottom_right_x = math.floor(center_X + img_wdth * (

mask_bott_perc * 0.5))

48 mask_in_top_left_x = math.floor(center_X - img_wdth * (

mask_topp_perc * 0.5))

49 mask_in_top_right_x = math.floor(center_X + img_wdth * (

mask_topp_perc * 0.5))

50

51 # mask points

52 mask_point = [(mask_bottom_left_x , bottom),

53 (mask_top_left_x , top),

54 (mask_top_right_x , top),

55 (mask_bottom_right_x , bottom)]

56

80

A Code

57 return mask_point

58 # Function which will be imployed to use perspective reverse

59 '''

60 Taking Input as image and four src points in a rhombus and

61 destination points in more linear quad and warp (look the image in bird

eye view) image to straighten effects of perspective

transformation.

62 '''

63 def persp_rev(img , corn_src , corn_dest , imag_size):

64 # corner source is corn_src

65 src = np.float32(corn_src)

66 # distantion points where the image is needed to warp

67 dst = np.float32(corn_dest)

68

69 # Given src and dst points , calculate the perspective transform

matrix

70 Matrix = cv2.getPerspectiveTransform(src , dst)

71 # This is to calculate the inverse matrix

72 inv_M = cv2.getPerspectiveTransform(dst , src)

73

74 # Warp the image using OpenCV warpPerspective ()

75 warped = cv2.warpPerspective(img , Matrix , imag_size , flags=cv2.

INTER_LINEAR)

76 cv2.destroyAllWindows ()

77 return warped , Matrix , invM

78 '''

79 Perspective matrix setting of image_size and warped_size

80 '''

81 def make_persp_mat(img):

82 imag_size = (img.shape [1], img.shape [0])

83 warp_size = (1200 , 1200)

84 # source and destination corners

81

A Code

85 src_corn = make_mask(img_size , 0.65, 0.05, 0.60, 0.1)

86 dest_corn = make_mask(warped_size , 0.1, 0.0, 0.4, 0.36)

87 warped , Matrix , inv_M = perspective_reverse(img , src_corn ,

dest_corn , warp_size)

88

89 return Matrix

90

91 '''

92 Below is function to perform perspective transform on a single point by

giving x, y pixel and persp matrix (Matrix)

93 It will return the x, y pixel pair in transformed space

94 '''

95 def tr_m(p_t_xy , M):

96

97 p_t = np.array([p_t_xy])

98 p_t = np.array([p_t])

99 reserv = cv2.perspectiveTransform(p_t , Matrix)

100

101 return reserv [0][0]

102

103

104 # updating velocity on new bounding box

105 def update_vel(self):

106 #apply current vel

107 self.ground_t_1 [0] += self.vel [1]

108 self.ground_t_1 [2] += self.vel [1]

109 self.ground_t_1 [1]+= self.vel [0]

110 self.ground_t_1 [3]+= self.vel [0]

111

112 def main():

113

114 vid_frames = "D:/ Beamng_qazi_data/Thesis_final_code/

82

A Code

Final_evaluation_videos/vid -1 _evaluation/vid_frames /0a4ef631 -

f8c1e17c -0000001. jpg"

115 vid_frames = img.imread(vid_frames)

116 # imgplot = plt.imshow(qaziImage)

117 # plt.show()

118

119 perspectiveMatrix = make_persp_mat(vid_frames)

120 # This will return the perspective matrix of fame

121 print (perspectiveMatrix)

122 # opening the file which includes the bounding box values of each

frame

123 with open('D:/ Beamng_qazi_data/Thesis_final_code/

Final_evaluation_videos/vid -1 _evaluation/video_fps_1_results.json',

'r') as fin:

124 data = json.load(fin)

125 ground_t = []

126 for i in data:

127 labels = i['labels ']

128 ground_t_1 = []

129 for l in labels:

130 x1 = round(float(l['box2d ']['x1']))

131 y1 = round(float(l['box2d ']['y1']))

132 x2 = round(float(l['box2d ']['x2']))

133 y2 = round(float(l['box2d ']['y2']))

134 ground_t_1.append(x1)

135 ground_t_1.append(y1)

136 ground_t_1.append(x2)

137 ground_t_1.append(y2)

138 ground_t.append(ground_t_1)

139 top , left , bottom , right = ground_t_1

140 print (ground_t_1)

141 # Computing the center point of bounding box

83

A Code

142 centerPoint = (left + (right - left) / 2.0, top + (bottom

- top) / 2.0)

143 print (centerPoint)

144 # Calculating the reverse matrix

145 reserv = tr_m(centerPoint , perspectiveMatrix)

146 print (reserv)

147 # Formula used for calculating the distance

148 distance = round ((((1200 - reserv [1])) / 100) ,1)

149 print (distance)

150 vel = [0.0, 0.0]

151 # function for computing for all images

152 def interp(self , ground_t_1 , alpha):

153 center = self.get_center_pt ()

154 self.update_vel ()

155 n = len(ground_t_1.ground_t_1)

156

157 for i in range(n):

158 self.ground_t_1[i] = self.ground_t_1[i] * (1.0 - alpha)

+ ground_t_1.ground_t_1[i] * alpha

159 prev_center_y = self.tm_center [1]

160 self.tm_center = reserv

161 # velocity estimation in y direction

162 vel_est_y = res[1] - prev_center_y

163 global frameNumber

164 base = getOurCarSpeed(frameNumber) # how fast am I going?

165 # updating velocity based on new center

166 new_center = self.get_center_pt ()

167 self.vel = [new_center [0] - center [0], new_center [1] -

center [1]]

168 self.age = 1.0

169 self.obscurred = False

170 fator = 4.0

84

A Code

171 global frameNumber

172 base = getOurCarSpeed(frameNumber)

173 # calculating speed

174 speed = base + ((-1 * vel[0] + -1 * vel [1]) * fator)

175 print (speed)

176

177 their_speed = []

178 distance1 = []

179 myspeed = []

180

181 their_speed.append(self.speed)

182 distance1.append(distance)

183 myspeed.append(getOurCarSpeed(frameNumber))

184 df_final = pd.DataFrame(data={"My Speed": myspeed , "Their speed":

their_speed , "distance": distance1 })

185 # creating a .csv file withh all the information

186 df_final.to_csv("D:/ Beamng_qazi_data/Code/CarND -Vehicle -Detection/

speed_distance_car5.csv", sep=",",

187 encoding="utf -8")

188

189 if __name__ == '__main__ ':

190 main()

Listing A.5: distance and speed estimation

1

2 # # Running the Simulation in BeamNG

3

4 import sys

5 from time import sleep

6 import numpy as np

7 import beamngpy

8 from scipy import interpolate

85

A Code

9 from beamngpy.sensors import Electrics

10 from beamngpy.sensors import Camera

11 import time

12 from beamngpy import BeamNGpy , Scenario , Road , Vehicle , setup_logging

13

14 SIZE = 1024

15

16 def main():

17 setup_logging ()

18

19 beamng = BeamNGpy('localhost ', 64256, home='D:/ BeamNG ') # This is

the host & port used to communicate over

20

21 scenario = Scenario('xyz_Map ', 'Thesis ')

22

23 vehicle = Vehicle('ego_vehicle ', model='etk800 ', licence='Qazi',

color='Green ')

24 overhead = Camera(pos = (-0.25, 0.78, 1), direction = (-0.25, 10,

1.1), fov = 60, resolution =(1280 , 720))

25 vehicle.attach_sensor('overhead ', overhead)

26 vehicle2 = Vehicle('ego_vehicle2 ', model='etkc', licence='Qazi2 ',

color = 'Silver ')

27 vehicle3 = Vehicle('ego_vehicle3 ', model='etk800 ', licence='Qazi3 ',

color = 'Silver ')

28 # when adding self driving car in real sceanrio

29 vehicle4 = Vehicle('ego_vehicle4 ', model='etk800 ', licence='Qazi3 ',

color = 'Blue')

30 road_a = Road(material = 'AsphaltRoad_lanes ', rid='main_road ',

defaultLanes = '2', texture_length= '5', defaultLaneWidth = '4',

scale = '1 1 1', detail = '0.25')

31 nodes = Road_a

32

86

A Code

33 road_a.nodes.extend(nodes)

34 scenario.add_road(road_a)

35

36 # Importing road coordinates from final_road.npy from road_final.py

37

38 final_roads = np.load('final_roads_vid_1.npy', allow_pickle=True)

39 count = 1

40 # nodes = []

41 for road in final_roads:

42 # name = road['name ']

43 values = road['values ']

44

45 road_obj = Road(material='AsphaltRoad_lanes ', texture_length= '

5')

46 nodes = values

47

48 road_obj.nodes.extend(nodes)

49 scenario.add_road(road_obj)

50

51 count = count + 1

52 print(count)

53 if count == 20:

54 break

55

56 '''Car 1 coordinates and speed handling '''

57

58 car_1_cord = normalised_coord_car_1

59 car1 = car_1_cord [0]

60 # print(orig)

61 speed_car_1 = speed_normalized

62 speed_1 = speed_car_1 [0]

63 # ==

87

A Code

64

65 '''Car 2 coordinates and speed handling '''

66

67 car_2_cord = normalised_coord_car_2

68 car2 = car_2_cord [0]

69

70 speed_car_2 = [14.6, 17.6, 14.3, 15.34, 13.30, 14.22, 14.47, 16.62,

17.85 ,15.34 , 16.65, 14.98, 14.3, 14.32 , 14.32]

71 speed_2 = speed_car_2 [0]

72 # ===

73

74 ''' Car 3 coordinates and speed handling '''

75

76 car_3_cord = normalised_coord_car_3

77 car3 = car_3_cord [0]

78

79 speed_car_3 = [5.0, 6.0 ,7.0 ,7.0 , 14.6, 17.6, 14.3, 15.34, 13.30,

14.22, 14.47, 16.62 , 15.85 ,13.34 ,12.3 ,12.34 ,15.32 ,20.22 , 21.1,

20.3, 23.2 ,22.0, 22.2, 21.34, 22.33, 18.11, 18.11]

80 speed_3= speed_car_3 [0]

81 #==

82

83 pos_car_3_start = (453.1446969569661 , 5.686902701854706 , 0)

84 scenario.add_vehicle(vehicle , pos = car1 , rot=(0, 0,130))

85 scenario.add_vehicle(vehicle2 , pos = car2 , rot=(0, 0,130))

86 scenario.add_vehicle(vehicle3 , pos = car3 , rot=(0, 0, 90))

87

88 #adding self driving car in the scenario

89 #scenario.add_vehicle(vehicle4 , pos= (510.4156331927404 ,

17.21674171742052 ,0), rot=(0, 0, 90))

90 scenario.make(beamng) # The make function of a scneario is used to

compile the scenario and produce a scenario file the simulator can

88

A Code

load

91

92 '''car no 1'''

93

94 path1 = list()

95 for i in range(len(car_1_cord)):

96 car1 = car_1_cord[i]

97 speed_1 = speed_car_1[i]

98 pos = (car1[0],

99

100 car1[1],

101

102 0)

103 speed = speed_1

104 print(pos)

105 print(speed)

106

107 node = {

108 'pos': pos ,

109 'speed ': speed

110 }

111 path1.append(node)

112

113 '''car no 2'''

114 path2 = list()

115 for i in range(len(car_2_cord)):

116 car2 = car_2_cord[i]

117 speed_2 = speed_car_2[i]

118 pos = (car2[0],

119

120 car2[1],

121

89

A Code

122 0)

123 speed = speed_2

124 print(pos)

125 print(speed)

126

127 node = {

128 'pos': pos ,

129 'speed ': speed

130 }

131 path2.append(node)

132

133 '''car no 3'''

134 path3 = list()

135 for i in range(len(car_3_cord)):

136 car3 = car_3_cord[i]

137 speed_3 = speed_car_3[i]

138 pos = (car3[0],

139

140 car3[1],

141

142 0)

143 speed = speed_3

144 print(pos)

145 print(speed)

146

147 node = {

148 'pos': pos ,

149 'speed ': speed ,

150 }

151 path3.append(node)

152

153 bng = beamng.open(launch=True)

90

A Code

154

155 bng.set_deterministic () # Set simulator to be deterministic

156 bng.set_steps_per_second (8) # With 60hz temporal resolution

157 bng.load_scenario(scenario)

158 bng.start_scenario ()

159 bng.hide_hud ()

160 #bng.pause ()

161 bng.set_tod(tod =0.4)

162 bng.display_gui_message(msg = "Simulation 1")

163 #bng.remove_step_limit ()

164 #bng.set_steps_per_second(sps = 1)

165 vehicle.ai_set_line(path1)

166 vehicle2.ai_set_line(path2)

167 vehicle3.ai_set_line(path3)

168

169

170 for it in range (250):

171 bng.step (8)

172 #for annotation use below line

173 # view = bng.poll_sensors(vehicle)[" overhead "][" annotation "]

174 #for colour frame use below

175 view = bng.poll_sensors(vehicle)["overhead"]["colour"]

176 view = view.convert('RGB')

177 filename = "Final_evaluation_videos/vid -1 _evaluation/

color_frames/frames_ {}. png".format(it)

178

179 view.save(filename)

180 print("{} file saved.".format(filename))

181 pass

182

183 print("Images saved.")

184

91

A Code

185 y = [p[0] for p in car_1_cord]

186 x = [p[1] for p in car_1_cord]

187 plt.plot(x, y, '.')

188 plt.axis('square ')

189 plt.show()

190 plt.clf()

191

192 # plotting road edges

193 road_geometry = bng.get_road_edges('main_road ')

194 left_edge_x = np.array ([e['left'][0] for e in road_geometry])

195 left_edge_y = np.array ([e['left'][1] for e in road_geometry])

196 right_edge_x = np.array([e['right '][0] for e in road_geometry])

197 right_edge_y = np.array([e['right '][1] for e in road_geometry])

198

199 def plot_road(ax):

200 x_min = min(left_edge_x.min(),

201 right_edge_x.min()) - 10 # We add/subtract 10

from the min/max coordinates to pad

202 x_max = max(left_edge_x.max(), right_edge_x.max()) + 10

203 # the area of the plot a bit

204 y_min = min(left_edge_y.min(), right_edge_y.min()) - 10

205 y_max = max(left_edge_y.max(), right_edge_y.max()) + 10

206 ax.set_aspect('equal ', 'datalim ')

207 ax.set_xlim(left=x_max , right=x_min)

208 # pyplot & bng coordinate systems have different origins

209 ax.set_ylim(bottom=y_max , top=y_min) # so we flip them here

210 ax.plot(left_edge_x , left_edge_y , 'b-')

211 ax.plot(right_edge_x , right_edge_y , 'b-')

212 plt.figure(figsize =(10, 10))

213 plot_road(plt.gca())

92

A Code

214 plt.show()

Listing A.6: Final simulation creation

A.3 Evaluation

1

2 import csv

3 import json

4 with open('Final_evaluation_videos/vid -4 _evaluation/video_12_results.

json', 'r') as fin:

5 data = json.load(fin)

6 ground_t = []

7 for i in data:

8 labels = i['labels ']

9 ground_t_1 = []

10 for l in labels:

11 x1 = round(float(l['box2d ']['x1']))

12 y1 = round(float(l['box2d ']['y1']))

13 x2 = round(float(l['box2d ']['x2']))

14 y2 = round(float(l['box2d ']['y2']))

15 ground_t_1.append(x1)

16 ground_t_1.append(y1)

17 ground_t_1.append(x2)

18 ground_t_1.append(y2)

19 ground_t.append(ground_t_1)

20 print(ground_t)

21

22

23 with open('Final_evaluation_videos/vid -4 _evaluation/results/

ground_truth_vid -4.csv', 'w', newline= '') as writeFile:

24 writer = csv.writer(writeFile)

93

A Code

25 writer.writerows(ground_t)

Listing A.7: Ground truth creation

1

2 import cv2

3 import csv

4 import matplotlib.pyplot as plt

5 # Load the image

6

7

8 import glob , os , re

9

10 files = os.listdir("Final_evaluation_videos/vid -4 _evaluation/

annotated_frames/")

11 files = sorted(files , key=lambda x: int(x.replace("frames_", "").

replace(".png", "")))

12

13 cv_img = []

14 for f in files:

15 img = "Final_evaluation_videos/vid -4 _evaluation/annotated_frames/"

+ f

16 print(img)

17 n = cv2.imread(img)

18 cv_img.append(n)

19 # print(cv_img)

20 print(len(cv_img))

21 print("--")

22 values_bbox_final = []

23 for i in cv_img:

24 values_bbox = []

25 i = cv2.cvtColor(i, cv2.COLOR_BGR2RGB)

26 i = cv2.cvtColor(i, cv2.COLOR_BGR2RGB)

94

A Code

27 # Blurring for removing the noise

28 img_blur = cv2.bilateralFilter(i, d = 7,

29 sigmaSpace = 75, sigmaColor =75)

30 # Convert to grayscale

31 img_gray = cv2.cvtColor(img_blur , cv2.COLOR_RGB2GRAY)

32 # Apply the thresholding

33 a = img_gray.max()

34 _, thresh = cv2.threshold(img_gray , a/2+60, a,cv2.THRESH_BINARY_INV

)

35 # plt.imshow(thresh , cmap = 'gray ')

36 # Find the contour of the figure

37 contours , hierarchy = cv2.findContours(

38 image = thresh ,

39 mode = cv2.RETR_TREE ,

40 method = cv2.CHAIN_APPROX_SIMPLE

)

41 # Sort the contours

42 contours = sorted(contours , key = cv2.contourArea , reverse = True)

43 # Draw the contour

44 img_copy = i.copy()

45 final = cv2.drawContours(img_copy , contours , contourIdx = -1,

46 color = (0, 0, 255), thickness = 2)

47 #plt.imshow(img_copy)

48

49 # The first order of the contours

50 c_0 = contours [0]

51 # Get the 4 points of the bounding rectangle

52 x, y, w, h = cv2.boundingRect(c_0)

53 # Draw a straight rectangle with the points

54 img_copy = i.copy()

55 img_box = cv2.rectangle(img_copy , (x, y), (x+w, y+h), color = (255,

0, 0), thickness = 4)

95

A Code

56 values_bbox.append(x)

57 values_bbox.append(y)

58 values_bbox.append(x+w)

59 values_bbox.append(y+h)

60 values_bbox_final.append(values_bbox)

61

62 print(values_bbox_final)

63

64 with open('Final_evaluation_videos/vid -4 _evaluation/results/

predicted_vid -4. csv', 'w', newline= '') as writeFile:

65 writer = csv.writer(writeFile)

66 writer.writerows(values_bbox_final)

67 print(x, y, x + w, y + h)

Listing A.8: Bounding box creation using contours

1

2 # importing the packages

3 import csv

4 from collections import namedtuple

5 # define the detection object image path , ground truth , prediction

6 detect = namedtuple("Detect", ["image_path", "gt", "pred"])

7

8 def b_i_o_u(box_A , box_B):

9 # x, y coordinates of the intersection bounding box

10 x_A = max(box_A[0], box_B [0])

11 y_A = max(box_A[1], box_B [1])

12 x_B = min(box_A[2], box_B [2])

13 y_B = min(box_A[3], box_B [3])

14

15 # calculating the area of intersection of rectangle

16 inter_area = max(0, x_B - x_A + 1) * max(0, y_B - y_A + 1)

17

96

A Code

18 # calculating the area of prediction and ground -truth

19 box_A_area = (box_A [2] - box_A [0] + 1) * (box_A [3] - box_A [1] + 1)

20 box_B_area = (box_B [2] - box_B [0] + 1) * (box_B [3] - box_B [1] + 1)

21

22 # areas - the interesection of area

23 i_o_u = inter_area / float(box_A_area + box_B_area - inter_area)

24 return i_o_u

25

26 # Example of detections in frames

27 examples = [

28 #Detection (" xframes_0.png", [406, 457, 635, 629], [449, 453, 664,

595])

29 Detection("xframes_9.png", [720, 451, 984, 651], [725, 443, 1063,

643]) ,

30 Detection("xframes_30.png", [433, 474, 608, 617], [410, 437, 678,

623])]

31 #Detection (" xframes_3.png", [373, 450, 577, 614], [228, 444, 608,

664]) ,

32 #Detection (" xframes_4.png", [379, 446, 577, 601], [370, 444, 690,

656])]

33

34 'Read ground_truth file '

35 ground_truths = []

36 with open('Final_evaluation_videos/vid -4 _evaluation/results/

ground_truth_vid -4.csv', 'r') as csvFile:

37 reader = csv.reader(csvFile)

38 for row in reader:

39 nRow = [int(v) for v in row]

40 ground_truths.append(nRow)

41 pred_values = []

42 'Reading predicted_results file'

43 with open('Final_evaluation_videos/vid -4 _evaluation/results/

97

A Code

predicted_vid -4. csv', 'r') as csvFile:

44 reader = csv.reader(csvFile)

45 for row in reader:

46 nRow = [int(v) for v in row]

47 pred_values.append(nRow)

48

49 length = len(ground_truths) if len(ground_truths) < len(pred_values)

else len(pred_values)

50 total_iou = 0

51 frame_results = []

52 for i in range(0, length):

53 gt = ground_truths[i]

54 pv = pred_values[i]

55 iou = b_i_o_u(gt , pv)

56 print(iou)

57 frame_results.append(iou)

58 total_iou += b_i_o_u(gt, pv)

59 avg = total_iou / len(frame_results)

60 print("avg:", avg)

61 print(total_iou)

Listing A.9: Evaluation Metric creation

98

Bibliography

[Abc] AbcNEWS. Police release video of Uber self-driving car accident. url: https:

//www.abc.net.au/news/2018-03-22/police-release-video-of-

uber-self-driving-car/9575716 (cit. on p. 2).

[AFI14] A. Armand, D. Filliat, and J. Ibafffdfffdez-Guzman. “Ontology-based con-

text awareness for driving assistance systems”. In: 2014 IEEE Intelligent

Vehicles Symposium Proceedings. June 2014, pp. 227–233. doi: 10.1109/

IVS.2014.6856509 (cit. on p. 25).

[Bea18] BeamNG GmbH. BeamNG.research. Version 1.3.0.0. Oct. 11, 2018. url:

https://www.beamng.gmbh/research (cit. on pp. 3, 29, 50).

[Ber+13] Christian Berger et al. “Model-based, composable simulation for the de-

velopment of autonomous miniature vehicles”. In: SpringSim. 2013 (cit. on

pp. 2, 23).

[Bra00] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software

Tools (2000) (cit. on pp. 44, 52).

[Bre+17] Guillaume Bresson et al. “Simultaneous Localization and Mapping: A Sur-

vey of Current Trends in Autonomous Driving”. In: IEEE Transactions on

Intelligent Vehicles 2 (2017), pp. 194–220 (cit. on p. 25).

99

Bibliography

[BSV14] L. Brun, A. Saggese, and M. Vento. “Dynamic Scene Understanding for Be-

havior Analysis Based on String Kernels”. In: IEEE Transactions on Cir-

cuits and Systems for Video Technology 24.10 (Oct. 2014), pp. 1669–1681.

issn: 1051-8215. doi: 10.1109/TCSVT.2014.2302521 (cit. on p. 24).

[Bur19] Matt Burns. Anyone relying on lidar is doomed. Apr. 2019. url: https://

techcrunch.com/2019/04/22/anyone-relying-on-lidar-is-doomed-

elon-musk-says/ (cit. on p. 12).

[CKC16] Adam Paszke Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.

ENet: A Deep Neural Network Architecture for Real-Time Semantic Seg-

mentation. June 2016. url: https://arxiv.org/pdf/1606.02147.pdf

(cit. on p. 25).

[Com18] Blender Online Community. Blender - a 3D modelling and rendering pack-

age. Blender Foundation. Stichting Blender Foundation, Amsterdam, 2018.

url: http://www.blender.org (cit. on p. 15).

[Cor+16] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene

Understanding”. In: Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016 (cit. on p. 25).

[CVI19] NEDA CVIJETIC. To Go the Distance, We Built Systems That Could Bet-

ter Perceive It. June 2019. url: https://blogs.nvidia.com/blog/2019/

06/19/drive-labs-distance-to-object-detection/ (cit. on p. 59).

[DT05] N. Dalal and B. Triggs. “Histograms of oriented gradients for human de-

tection”. In: 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05). Vol. 1. June 2005, 886–893 vol. 1. doi:

10.1109/CVPR.2005.177 (cit. on p. 20).

100

Bibliography

[dat] MGRS data. Military Grid Reference System. url: http://mgrs-data.

org/ (cit. on p. 16).

[DAG17] Igor Dosen, Marianne Aroozoo, and Michael Graham. Automated Vehicles.

Dec. 2017. url: https://www.parliament.vic.gov.au/publications/

research - papers / send / 36 - research - papers / 13839 - automated -

vehicles (cit. on p. 1).

[Erb09] Christian Erbsmehl. “Simulation of real crashes as a method for estimating

the potential benefits of advanced safety technologies”. In: The 21st Inter-

national TechnicalConference on the Enhanced Safety of Vehicles (ESV).

2009 (cit. on p. 22).

[Fin19] Geoff Fink. Proprioceptive Sensor Dataset for Quadruped Robots. 2019. doi:

10.21227/4vxz-xw05. url: http://dx.doi.org/10.21227/4vxz-xw05

(cit. on p. 13).

[Fon+18] Valentina Fontana et al. “Action Detection from a Robot-Car Perspective”.

In: CoRR abs/1807.11332 (2018) (cit. on p. 22).

[Gar] Ed Garsten. Sharp Growth In Autonomous Car Market Value Predicted

But May Be Stalled By Rise In Consumer Fear. url: https : / / www .

forbes.com/sites/edgarsten/2018/08/13/%20sharp- growth- in-

autonomous-car-market-value-predicted-but-may-be-stalled-by-

rise-inconsumer-fear/#57849dff617c (cit. on p. 1).

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on p. 37).

[15] “Geodesy”. In: GPS Satellite Surveying. John Wiley Sons, Ltd, 2015.

Chap. 4, pp. 129–206. isbn: 9781119018612. doi: 10.1002/9781119018612.

101

Bibliography

ch4. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/

9781119018612.ch4. url: https://onlinelibrary.wiley.com/doi/

abs/10.1002/9781119018612.ch4 (cit. on p. 31).

[GBZ16] Hana Gharbi, Sahbi Bahroun, and Ezzeddine Zagrouba. A Novel Key Frame

Extraction Approach for Video Summarization. Dec. 2016. url: http://

www.scitepress.org/Papers/2016/57257/57257.pdf (cit. on p. 24).

[Gru+14] D. Gruyer et al. “From virtual to reality, how to prototype, test and eval-

uate new ADAS: Application to automatic car parking”. In: 2014 IEEE

Intelligent Vehicles Symposium Proceedings. June 2014, pp. 261–267. doi:

10.1109/IVS.2014.6856525 (cit. on p. 23).

[12] “IEEE Standard for Distributed Interactive Simulation–Application Proto-

cols”. In: IEEE Std 1278.1-2012 (Revision of IEEE Std 1278.1-1995) (Dec.

2012), pp. 1–747. issn: null. doi: 10.1109/IEEESTD.2012.6387564 (cit. on

p. 14).

[J F] Steven K. Feiner J. F. H. James D. Foley Andries van Dam. Computer

Graphics. url: https://ptgmedia.pearsoncmg.com/images/9780321399526/

samplepages/0321399528.pdf (cit. on p. 44).

[Jan09] Volker Janssen. “Understanding coordinate systems, datums and transfor-

mations in Australia”. In: (Jan. 2009), pp. 697–715 (cit. on p. 18).

[Jia+13] H. Jiang et al. “A fast method for RGB to YCrCb conversion based on

FPGA”. In: Proceedings of 2013 3rd International Conference on Computer

Science and Network Technology. Oct. 2013, pp. 588–591. doi: 10.1109/

ICCSNT.2013.6967182 (cit. on p. 39).

102

Bibliography

[Lho] Christoph Lhotka. Keplerian Orbital Elements. url: http://demonstrations.

wolfram.com/KeplerianOrbitalElements/%20Wolfram%20Demonstrations%

20Project (cit. on p. 16).

[Li+18] Li Li et al. “Artificial intelligence test: a case study of intelligent vehicles”.

In: Artificial Intelligence Review (2018), pp. 1–25 (cit. on p. 1).

[Mar+17] James Martin et al. Certification for Autonomous Vehicles. Dec. 2017. url:

https://www.cs.unc.edu/~anderson/teach/comp790a/certification.

pdf (cit. on p. 1).

[Mob18] Mobileye. Sensing the Future. Apr. 2018. url: https://www.mobileye.

com/ (cit. on p. 13).

[Mot16] California Department of Motor Vehicle. Google autonomous car crash re-

port. Aug. 2016. url: https://www.dmv.ca.gov/portal/wcm/connect/

6448a850-67fa-4136-938c-28c6cd9a4afd/Google_081616.pdf?MOD=

AJPERES&CVID= (cit. on p. 2).

[Naw15] Shah Nawaz. “HOG-SVM Car Detection on an Embedded GPU”. PhD the-

sis. Nov. 2015 (cit. on p. 37).

[NHT18] NHTSA. Automated Vehicles for Safety. Nov. 2018. url: https://www.

nhtsa.gov/technology-innovation/automated-vehicles-safety (cit.

on p. 1).

[Olb] Roland Olbricht. Overpass API. url: http://overpass-api.de/ (cit. on

p. 32).

[Ope17] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.

2017. url: https://www.openstreetmap.org (cit. on pp. 4, 31).

103

Bibliography

[PAP13] MORGAN STANLEY BLUE PAPER. Self-Driving the New Auto Indus-

try Paradigm. Nov. 2013. url: https://orfe.princeton.edu/~alaink/

SmartDrivingCars/PDFs/Nov2013MORGAN-STANLEY-BLUE-PAPER-AUTONOMOUS-

CARSEFBC9A- SELF- DRIVING- THE- NEW- AUTO- INDUSTRY- PARADIGM.pdf

(cit. on p. 1).

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on pp. 20, 39).

[PE12] M. Platho and J. Eggert. “Deciding what to inspect first: Incremental

situation assessment based on information gain”. In: 2012 15th Interna-

tional IEEE Conference on Intelligent Transportation Systems. Sept. 2012,

pp. 888–893. doi: 10.1109/ITSC.2012.6338670 (cit. on p. 24).

[PGE12] M. Platho, H. Grofffdfffd, and J. Eggert. “Traffic situation assessment by

recognizing interrelated road users”. In: 2012 15th International IEEE Con-

ference on Intelligent Transportation Systems. 2012, pp. 1339–1344 (cit. on

pp. 2, 24).

[Pop14] Gabriel Popescu. “Pixel geolocation algorithm for satellite scanner data”.

In: June 2014 (cit. on p. 17).

[Ram+18] Vasili Ramanishka et al. “Toward Driving Scene Understanding: A Dataset

for Learning Driver Behavior and Causal Reasoning”. In: 2018 (cit. on p. 23).

[Red+15] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object De-

tection. 2015. arXiv: 1506.02640 [cs.CV] (cit. on p. 59).

[Rez+19] Seyed Hamid Rezatofighi et al. “Generalized Intersection over Union: A

Metric and A Loss for Bounding Box Regression”. In: CVPR. 2019 (cit. on

p. 53).

104

Bibliography

[SAE] SAE. Automated driving. url: https : / / www . sae . org / misc / pdfs /

automated_driving.pd (cit. on p. 6).

[Sch] Adam Schneider. GPS visualizer. url: https://www.gpsvisualizer.com/

(cit. on p. 28).

[Spe+13] J. Spehr et al. “Efficient scene understanding for intelligent vehicles using

a part-based road representation”. In: 16th International IEEE Conference

on Intelligent Transportation Systems (ITSC 2013). Oct. 2013, pp. 65–70.

doi: 10.1109/ITSC.2013.6728212 (cit. on p. 23).

[Taw17] Tawnkramer. CarND-Vehicle-Detection. Aug. 2017. url: https://github.

com/tawnkramer/CarND-Vehicle-Detection (cit. on p. 37).

[Thea] TheEconomist. Why Uber self-driving car killed a pedestrian. url: https:

//www.economist.com/the-economist-explains/2018/05/29/why-

ubers-self-driving-car-killed-a-pedestrian (cit. on pp. 2, 3).

[Theb] TheGuardian. Uber dashcam footage shows lead up to fatal self-driving crash

video. url: https://www.theguardian.com/technology/video/2018/

mar/22/in-car-footage-shows-fatal-self-driving-crash-video

(cit. on p. 2).

[usa] usatoday. Uber self-driving car crash. url: https://www.usatoday.com/

story/money/cars/2018/05/24/uber-self-driving-car-crash-ntsb-

investigation/640123002/ (cit. on pp. 2, 3).

[Wal+14] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In:

PeerJ 2 (June 2014), e453. issn: 2167-8359. doi: 10.7717/peerj.453. url:

https://doi.org/10.7717/peerj.453 (cit. on pp. 38, 41).

[Was] Jacob Wasserman. mplleaflet library. url: https://github.com/jwass/

mplleaflet (cit. on p. 31).

105

Bibliography

[Yu+18] Fisher Yu et al. “BDD100K: A Diverse Driving Video Database with Scal-

able Annotation Tooling”. In: ArXiv abs/1805.04687 (2018) (cit. on pp. 49,

50).

[ZF17] ZF. Forward-Looking Radar. July 2017. url: https : / / www . zf . com /

products/en/lcv/products_51104.html (cit. on p. 12).

[Zha+15] L. Zhao et al. “Ontology-based decision making on uncontrolled intersec-

tions and narrow roads”. In: 2015 IEEE Intelligent Vehicles Symposium

(IV). June 2015, pp. 83–88. doi: 10.1109/IVS.2015.7225667 (cit. on

p. 25).

[Zof+16] M. R. Zofka et al. “Testing and validating high level components for auto-

mated driving: simulation framework for traffic scenarios”. In: 2016 IEEE

Intelligent Vehicles Symposium (IV). June 2016, pp. 144–150. doi: 10 .

1109/IVS.2016.7535378 (cit. on pp. 2, 23).

106

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig und ohne Benutzung an-

derer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Ausführungen,

die wörtlich oder sinngemäß bernommen wurden, als solche gekennzeichnet sind, sowie,

dass ich die Masterarbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde

vorgelegt habe.

Passau, May 22, 2020

Qazi Mujahid

107

qazi mujahid

