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Abstract 

Automotive technology is seeing tremendous application in the emerging field of autonomous 

vehicles (AV). With the prevalence of autonomous vehicles in our world today, driven by 

advances in computer vision algorithms on large amount of data, it is important to look for more 

efficient ways for development working models with high level of reliability. For us to achieve 

better and accurate development of algorithms, we need to get results that reflect ground truth 

information about pose of objects around the vehicle. Although, low-level, object detection and 

tracking are crucial for the buildup of many higher level functionalities of AVs. This has proven 

to be challenging because, it requires laborious accurate sensors’ calibration, annotations of 

images and semantic segmentation of image pixels.  

In this thesis, we adopt an open approach to explore the generation of ground truth data that 

would be useful for object detection using a driving simulator called beamng.research 

(beamng). This is important because sensors for generating training data for AVs and other 

autonomous systems can be expensive and many of the stack in autonomous vehicles are 

proprietary. We introduce a method of creating the ground truth data with a simulator. The 

simulator gives the true location of objects in the simulation and sensor data streams. The 

proposed method, can help us address the problem of annotation of ground truth data that is 

otherwise, difficult with real life data. We made a prototype that can generate annotated images 

and point cloud data. The prototype allows generation of training/validation data in an unlimited 

amount with the existing beamng scenarios. We generated 200 frames of images and 200 sets 

of point cloud data. We tested the data in practice by using it to validate YOLO v3 object 

detection running on ROS platform. 

Keywords: Autonomous vehicle, computer vision, object detection, simulation/simulator, 

synthetic data, ground truth data, artificial intelligence, beamng 

 

CERCS P170/P176: Computer science, numerical analysis, systems, control/ Artificial 

Intelligence 

 

This thesis is written in English, contains seven (7) Chapters across 60 pages, including 14 

figures and 9 tables. 



  

Annotatsioon 

Autonoomsete sõidukite objektituvastuse valideerimisandmete loomine 

sõidusimulaatoriga 

Autonoomsed sõidukid (AS) on kiirelt laienev valdkond ja nende edukus sõltub tehisnägemise 

algoritmidest. Seetõttu on oluline leida efektiivsemaid viise kõrge usaldusväärsusega mudelite 

välja töötamiseks. Parema ja täpsema algoritmide arendustöö jaoks on vaja andmeid, mis 

kajastavad tuvastatavate objektide tegelikke asukohti antud sensorandmete korral. See on 

osutunud väljakutseks sensorite kalibratsiooni, piltide märgendamise ja nende semantilise 

segmenteerimise töömahukuse tõttu. 

Lõputöös kasutame avatud platvormidel põhinevat lähenemist valideerimisandmete loomisele 

kasutades simulaatorit beamng.research (beamng). Avatud lähenemine on oluline, kuna sageli 

on AS-ide platvormid suletud ja sensorite rakendamine kulukas. Simulaator annab meile nii 

sensorite andmevood kui ka objektide tõelised asukohad simulatsioonis oleva sõiduki suhtes. 

Väljapakutud meetod võimaldab lahendada valideerimise jaoks vajaliku märgendamise 

probleemi, mis on päriseluliste andmete puhul keeruline. Koostasime prototüübi, mis  väljastab 

märgendatud pildifaile ja punktipilvi. Prototüüp võimaldab piiramatus koguses märgendatud 

andmete genereerimist olemasolevate beamng stsenaariumite piires. Prototüübiga genereeriti 

200 pildikaadrit ja 200 punktipilve.  Andmete praktilise kasutuse testimiseks valideeriti nendega 

YOLO v3 objektituvastuse algoritmi ROS platvormil. 

Märksõnad: Autonoomne sõiduk, arvuti nägemine, objektide tuvastamine, simulatsioon / 

simulaator, sünteetilised andmed, maapealsed tõeandmed, tehisintellekt, beamng. 

 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 60 leheküljel, 7 peatükki, sealhulgas 

14 joonist ja 9 tabelit.   
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1 INTRODUCTION 

 Overview 

The automobile industry has grown over more than a century and the spate of 

development in recent times has been unprecedented. The evolution has progressed 

through many stages of trying to reduce human effort put into commuting from one 

place to another. In the world today, we have car manufacturers in a stiff competition 

to eliminate human involvement in the driving tasks, with the rise and popularity of 

autonomous vehicles (AV/AVs). Although, we are yet to attain full autonomy in all 

sense of autonomy, significant success has been recorded in autonomous systems.  

 The development of Autonomous Vehicles 

More than ever before, we can already see the transformation that has happened in the 

automobile industry. In the wake of the sleekest environmentally friendly newer 

generation cars, is the need to increase human efficiency and productivity by reducing 

human effort put into commuting while ensuring the safest mobility of these vehicles 

and their passengers alike [1, 2].   

Automobiles are now increasingly moving from the old age fuel-based engines to 

electrically powered designs with industry leaders putting aggressive effort into not 

just manufacturing electric cars but cars that can also drive themselves (autonomous 

driving). Following from the above, we shall look at the various levels of automation 

that we have in the automotive space. Figure 1 below, shows an overview of the 

different levels of autonomy that we have. This will help to better assimilate the need 

for further development of autonomous vehicles  in perspective [3] 



  

  

Figure 1: Levels of Autonomy in Automobile.1  

 

Autonomy in robotics and vehicular systems are emerging in numerous areas of 

endeavor so much so that during the coming years, it is postulated that cars that have 

achieved full automation will be driving our streets, untarred roads, highways, 

metropolises, cities and with no human intervention [4]. 

 Autonomous Vehicle Architecture  

Autonomous systems and by extension, AVs require complex computations and 

decisions. More so, in AVs, to ensure safety of both passengers and surrounding traffic, 

advanced perception systems are employed to sense the environment, carry out scene 

assimilation and for detection, mapping and obstacle tracking along and near the path 

of the vehicle [5]. 

From Figure 2 above, we see that there are 3 main modules (Sensing, Computing and 

Actuation) with which AVs operate. In this thesis, we are more concerned about the 

first section and a part of the second. The second contains way much more details which 

we are not able to deal with in one project task.  

 

                                                           
1 https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-
themselves-top-11automakers/ 



  

 

 

Figure 2: Basic autonomous vehicle model 

 

 Motivation  

As we aim to achieve full autonomy in cars today, and object detection being a pivotal 

process in this technology, it is essential that we get this aspect of the autonomous 

systems and by extension, autonomous vehicles right. Popular autonomous vehicle 

manufacturing companies today, still have to contend with failures, accidents and huge 

fallouts every now and then associated with object/obstacle detection flaws.  

Again, progress being made in the computer vision field has been steered by high-

capacity models trained on huge datasets. Creation of large datasets unfortunately, are 

very costly due to the amount of human effort required [6]. More so, many of the 

existing datasets for algorithm evaluation for object detection and other computer 

vision tasks contain only visual imagery with no independent measurement of their 

locations and trajectories [7].  



  

According to [8], it is mentioned that the key to success in design for modern 

automobiles is early involvement of real drivers in virtual vehicles, sub-systems and 

environments/scenarios via Driver-in-the-Loop (DIL) simulations. In the real sense, 

this is a way of assessing ground truth about performance of such automobiles against 

real life. If this is possible, we aim to adopt same strategies and such systems in 

obtaining ground truth data for autonomous purposes.  

In this project, we would explore the engineering problem of obtaining ground truth data 

for computer vision objection detection purposes in self- driving context using a driving 

simulator. The ISEAUTO project is a practical example of where the result of this study 

can be useful. Iseauto, as the name implies in Estonian, is a pioneer self-driving car 

project developed by Tallinn University of Technology (TTÜ) in collaboration with 

Silberauto AS, in Estonia [9].  

 

Figure 3: Iseauto 3D view2 

 

The car has a speed limit of 10-20km/h because it is designed to operate as last-mile 

means of transportation, availing alternative mobility in closed and diverse traffic 

territories within smart and safe limits. With a vision of building interesting research 

projects for future innovations, the university aims to develop competence in the 

                                                           
2 https://iseauto.taltech.ee/en/tehniline/ 

https://www.ansiblemotion.com/automotive-driver-in-the-loop-simulation-articles/topic/driver-in-the-loop
https://iseauto.taltech.ee/en/tehniline/


  

autonomous field and provide interesting projects for the engineering students. As at the 

time of this publication, the car runs Ubuntu version 16.04 operating system and uses 

the following sensors during driving for perception, localization, motion planning and 

navigation [10]: 

Table 1: ISEAUTO Design Specification2 

Technical 

parameters 
Dimensions Sensors Software Stack 

 Up to 6 

passenger/cargo 

places 

 Cruising speed 

range - 10-20 

km/h 

 Turning circle - 9 

m 

 Main motor 

power - 47 kW 

 Battery 16 kWh 

 Height - 2400 

mm 

 Length - 3500 

mm 

 Width - 1500 

mm 

 LiDAR 

Velodyne VLP-

16 x2 

 8 Cameras 

 16 Ultrasonic 

proximity 

sensors  

 A Near-ranged 

radar 

 An IMU sensor 

 An RTK-GNSS 

 Robot 

Operating 

System (ROS) 

 Autoware 

 Yolo 

 

It is important to mention that driving simulators are now being used as an essential 

player in the development, testing and validation of AVs. There is a continuous 

exploration of different simulation platforms, some of which are mentioned in 2.1, in 

the development of AVs because they have proven to provide flexibility in terms of 

sensor and environmental conditions. The main area of study is the generation of 

ground truth data from simulated sources. There has been some work in this field but 

not very many when compared to instances where datasets are generated from real life 

environments. While perception algorithms may have their own drawbacks from data 

to data and from model to model. there’s an obvious concern about the quality about 

quality of synthesized data. As such, there is a continuous need to explore different 

options and alternatives as we strive to improve accuracy and confidence levels in AV 

development. 



  

 Thesis goal 

Enormous efforts have gone into determining and establishing ground truth data for 

autonomous vehicles. On another hand, for many reasons more than object detection 

and tracking, engineers have used driving simulators to get objective measurements of 

what real life may look like [8]. This was posited as well in [11]. In the real world, 

object detection proves difficult, because, objects and thence, their images are affected 

by many constraints such as illumination, orientation, scale and occlusion [12].  

In this thesis, however, we aim to develop synthetic data (LIDAR and camera) suitable 

for evaluation of object detection algorithms. We introduce a method obtaining ground 

truth data from a vehicular software platform called beamng.research3 (which provides 

enough flexibility for altering the behavior of simulated vehicles thereby, resulting in 

fast development iteration times). 

 Thesis Outline 

In this chapter, we had a brief introduction about autonomous vehicles, the importance 

of data in its development and how we can adopt synthesized data as a means for 

carrying out development of AVs. In Chapter 2, we discuss some works that have 

been done on generating benchmarks for different computer vision assignments. In the 

same vein, we will look at research works using simulated or synthesized data for 

similar purposes. In Chapter 3, we document the different tools and mention 

specifications of systems used for our project. Additionally, in Chapter 3.4 we 

describe how the experiment was carried out. We share our methodology for validating 

our results in Chapter 5. We mention ways by which the work presented in this thesis 

can be improved in Chapter 6. In Chapter 7, we do a wrap up in the conclusion. 

                                                           
3 https://beamng.gmbh/research/ 

https://beamng.gmbh/research/


  

2 BACKGROUND AND RELATED WORKS 

Enormous efforts have gone into determining and establishing ground truth data for 

autonomous vehicles. Also, for many reasons more than object detection and tracking, 

engineers have used driving simulators to get objective measurements of what real life may 

look like [8]. This is further strengthened by the comparative studies done by Nikolenko in 

[11]. In the real world, object detection proves difficult, because, objects and thence, their 

images are affected by many constraints such as illumination, orientation, scale and 

occlusion [12]. 

 Related works 

As opposed the simulator used in our thesis work, which is a more recently developed 

video game engine, [13] introduced a novel simulator called CARLA for use in urban 

driving simulation. The paper studied the performance of three ways of achieving 

autonomous driving – end-to-end reinforcement learning trained model, end-to-end 

imitation learning trained model, and the classical modular pipeline. On another end, 

Nikolenko [11] presents an underlying basis for our thesis work. He attempted to do a 

comprehensive analysis of the different directions that synthetic data can be developed 

and applied. The survey discusses synthetic datasets for basic CV problems and ways 

of improving and producing synthetic data, moving from synthetic-to-real domain and 

privacy concerns. 

While object detection models have their own limitations in use for real time 

autonomous vehicles, the whole process of getting precisely-labeled datasets which are 

favored more to support these models prove a tedious task on its own. They are 

expensive, time-consuming and may also require both highly technical skills and 

physical inputs to gather the data. For instance, at the University of Waterloo, they use 

the Global Navigation Satellite System (GNSS) and the Inertial Navigation System 

(INS) post-processing method to augment different weather condition data collected 

over thousands of kilometers. Their goal was to use the data to create a driving dataset 

for a new road that accounts for omni-weather autonomy challenges (e.g. 3D object 

detection and tracking, precision in localization and mapping to semantic segmentation 



  

of the driving environment using omnidirectional vision and light detection and ranging 

(LiDAR) data) [14].  

In the same vein, there exists the widely used KITTI dataset, which is hugely used for 

academic and research purposes in autonomous driving. Here, the team which comprises 

individuals from Karlsruhe Institute of Technology (KIT), Max Planck Institute for 

Intelligent Systems (MPI Tübingen) and University of Toronto used the Annieway 

autonomous driving platform to develop new real-world computer vision benchmarks 

for a vast range of vision related tasks including 3D object detection and 3D tracking. 

To achieve this, they attached to a station wagon, cameras, LiDAR and GPS systems 

and drove through rural areas and highways of the mid-sized city of Karlsruhe [15]. 

There is a growing number of research being done every day to improve existing 

datasets used for autonomous driving. In a research titled “nuScenes: A multimodal 

dataset for autonomous driving”, the authors pioneered the publishing of a dataset that 

is obtained from the full AV sensor suite: this includes cameras (6), radars (5) and 

LiDAR (1), with full 360-degree field of view. The dataset consists of a thousand 20s 

long scenes, bounding boxes for 23 classes and 8 features and has 7 and 100 times as 

many annotations and images as the groundbreaking KITTI dataset respectively [16]. 

The experiment involved well thought out driving plans, vehicular setups, careful 

selection of interesting scenes, and dataset annotations. Furthermore, the driving routes 

were carefully chosen in a bid to capture a diverse range of settings, times and even 

weather conditions.  

There is no doubt that AVs have attracted considerable amount of attention in the past 

few years from the academic, commercial and general public entities. The reason for 

this can be linked to the expectations of their societal benefits. The expectations are that 

safety, mobility, and the environment would be tremendously affected and these have 

captivated the interests of people all over the world. The key word here, is safety 

particularly in light of recent accidents attributed to AVs. It has become evident that we 

have a long way to go in order to meet the high standards and expectations associated 

with AV [2]. 

Now, there’s the argument that an AV has to be test-driven many millions of miles in 

difficult conditions to be able to demonstrate that fatalities and injuries are reduction to 

a high degree of statistical reliability. Even with this, it could takes take several years of 



  

road tests under the most intensive evaluation strategies to achieve the desired 

reliability. A possible solution that has been proposed, is to use of simulation systems, 

which are already common in other sectors like manufacturing, medical training, law 

enforcement and military. Simulations would help us to test and validate the capability 

of AVs in the areas of environmental perception, control and navigation and also being 

able to generate large amount of training data to train machine learning/computer vision 

algorithms, such as a deep neural network (NN). The latter has more recently been 

adopted in computer vision. 

Following from the above, a common practice to generate simulated data is to come up 

with combinations of computer graphics (CG) models and robot motion planning 

methodologies to create synthesized environments wherein vehicles and other players 

can be rendered and animated. Based on this technique, a number of simulators have 

been developed by tech giants and a number of key players. Examples include as Intel’s 

CARLA, Microsoft’s AirSim, NVIDIA’s Drive Constellation, Google/Waymo’s 

CarCraft. They have all been proven to achieve qualitative rendering results. In an article 

published on WARDSAUTO by Danny Atsmon, the author presents several arguments 

to support the use of simulated technology for AVs. The author’s line of thought follows 

the underlying demerits to favor simulated technology: software stack for telling the 

location of a car with respect to the world alone is a serious bone of contention [17]. 

Furthermore, Atsmon iterates that the ability of the car to make decisions on the go 

within the testing environment is questionable. Also, accuracy in real world tests is 

undermined because they do not include ground truth while the controllability of data 

more consistently and closely, will inevitably be of higher quality. On the angle of 

economies of scale, AV manufacturers usually have to build test models manually and 

single at a time, which keeps production costs on the high side. This also requires that 

during a test run, a real driver, engineers, supervisors and safety coordinators may have 

to be involved including securing permission from every region involved. As laws may 

vary from one municipality to another, local regulations need to be engulfed and terrain 

learned. Insurance is also expensive in this regard because of the high risk nature of 

autonomous systems. As the use of simulators is a relatively new endeavor in AVs, 

below, we shall see a snapshot of where simulation technologies have been employed 

to support AV dataset. 



  

Based on an Advanced Driver Assistance Systems (AADS) manufacturer’s demand, 

CVEDIA’s SynCity simulator was able to enable an environment that included custom 

objects, such as city infrastructure and humans, and extreme weather conditions that 

could be manipulated via its interface and API. The said manufacturer was having 

difficulties with identification and classification of close-up objects also with creating 

semantic segmentation of LiDAR. With the simulator, it was possible to generate 

synthetic segmented LiDAR data within SynCity [18]. To scale up these kinds of 

synthetic data, [19] designed an approach called the AADS. They use augmented real-

world images with a simulated traffic flow to create photo-realistic synthesized images 

and renderings using Lidar and cameras as sensors. These renderings are then used to 

generate some realistic traffic flows for cars and pedestrians in readiness for end-to-end 

autonomous driving training and testing. 

While it is clear that it will be impossible to capture every environmental and weather 

condition in which real life use of autonomous driving may happen, it is glaring from 

the above, the amount of physical and intellectual efforts that need to be put into 

establishing reliable ground truth dataset or benchmarks. Interestingly, as driving 

simulators for games and experimental purposes are becoming widely popular, they may 

offer some opportunities for discarding this laborious and somewhat inefficient and 

slightly unreliable way of gathering ground truth data for autonomous vehicles. This is 

important for us because, we need to drive efficiency just as much as we aim to achieve 

the goal of safe autonomous driving. Yet, challenges that current state-of-the-art 

methodologies pose are that the simulation engines are either not open-source or simply 

lack features that help us model closely real life environment and scenarios as we want 

and are reliant on game engines or high-fidelity computer graphics (CG) models. 

In our work, we shall make use of a combination of sensors, particularly LiDAR and 

cameras to generate high-fidelity images and annotations within our simulator just as 

[16] obtained better dataset generating a multimodal dataset using a combination of 

sensors but in a real world driving context. Our work may set a good precedence to 

explore multimodal dataset generation and eventually place simulated technology at the 

core for AV development and testing. 

To evaluate our results, we deployed an object detection model to validate our results. 

In the context of TTÜ Iseauto project, [20] developed an evaluation model to analyze 



  

the performance of three (3) object detection models - Single-Shot Detector (SSD), Fast 

Region-based Convolutional Neural Network (Fast-RCNN) and You Only Look Once 

v2 (YOLO v2). Expectedly, a self-generated dataset containing relevant data was used. 

He mentioned that, “annotating ground truth data for object detection is relatively 

expensive task”. The outcome of his work is that, although YOLO v2 seemed to have 

performed best, object detection reliability required for safety-critical applications was 

not attained by any of the object detectors. The author postulated the use of YOLO v3 

for better performance. 

 Relevant theory and Concepts 

 Ground truth data 

Ground truth data helps us with data that has relevant and related features and objects on 

the ground. With ground truth data, we can perform evaluation of different computer 

vision algorithms. Just as ground truth data collection using data from calibrated state-

of-the-art sensors in real-world environments has evolved for many years, synthetic, 

simulated or imitated data has been used for several years as point of reference for the 

performance of algorithms for computer vision [7]. Previous works have established that 

driving simulators especially those that rely on game engines and high-fidelity computer 

graphics can be used to model real world driving scenarios. 

The main goal of a ground-truth generation process is that at any instant, we are able to 

accurately give details of the position, orientation and kinematics of an observed object 

or obstacle as the case may be within the view reference of the ego-vehicle. Ground truth 

data includes images, image labels (which may be added manually of automatically by 

analysis) and a defined model for object detection [21]. 

  

  



  

 

Figure 4: Illustration of Ground Truth Data generation from an input image and the 

output of from a prediction model. [22] 

 

 Object detection 

We have established earlier that one of the computer vision (CV) tasks in AVs is Object 

detection (OD). This follows simple logic because, human-driving requires perception 

and control and similar assignments would be transferred to computers. Being able to 

accurately identify objects in images and in real-time as in the case of continuous 

image/video streams such as cars, traffic and road signs, pedestrians, dogs, forests etc., 

may speed up the development of autonomous cars with high level of safety borne as 

human drivers.   

While it is a relatively easy task for humans to detect and identify objects present in an 

image, it proves a rather a more non-trivial activity for computers. There is a massive 

biological computing power that the visual faculty of humans offers, making it fast and 

accurate and can perform complex tasks like identifying multiple objects and even spot 

obstacles with little consciousness. Owing to the availability of massive amount of data, 

more refined machine vision algorithms and GPUs with faster computing speed today, 

we are now able to train devices to detect and classify different objects from images with 

higher accuracies. 

In the past, 2D methods of object detection were popular. These approaches involve 

classifying objects based on some feature extract paradigm to predict the probabilities of 

an object in an image. The correctness of these systems is poor because 2D image signals 

are sensitive to altering imaging conditions such as brightness, darkness etc. 3D 

information is more consistent because it holds shadow, as a consequence, more detailed 



  

results are obtained. Figure 5 shows an example of such a model, where a model is trained 

on a dataset of closely cropped images of a car and the model predicts the probability of 

an image being a car [22].  

 

 

Figure 5: Illustration of Convolution network for object detection4 

 

YOLO (latest stable version YOLO v3 and with new release YOLO v4) is one of the 

fastest object detection models. It uses the Darknet-53 (i.e. 53 (3 X 3) and (1 X 1) 

convolutional layers) feature extractor. Following from the 19 layered darknet extractor 

in v1, darknet-53 with an extended network of 53, draws inspiration from the ResNet 

idea of skipping connections within the convolution network without gradient 

diminishment as the propagation to deeper layers ensue. Prediction of bounding boxes 

is done in at 3 different scales based on the concept of feature pyramid networks. 

 

  

                                                           
4 https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


  

Table 2: Darknet-53 [23] 

 

Object detection is not limited to 2D methods on images alone. We now also have 3D 

object detection models on images and methods that leverage LiDAR (Light Detection 

and Ranging) point cloud information. Although, Lidar produces data in the form of 

point cloud, it generally gives higher accuracy than camera-based approaches. It is a 

faster, effective and highly accurate way of object detection and creates high-resolution. 

Examples of 3D object detection methods are: PerspectiveNet, HGNet (Geo only), 

SVGA-Net, IPOD, PV-RCNN, 3D-MPA, CenterPoint, ImVoteNet etc.  

 Object detection metrics 

Performance measurement is key in many tasks in computer vision. When you build an 

object detector, you concern yourself about how well your model has performed. And 

sure, while your model can identify objects within an image, there’s a need to be able to 

quantify the performance. The objective of an object detection assignment is to;  

(i) Spot if or not an object is present and determine the class of that object in an 

image 

(ii) Estimate the coordinates of bounding boxes placed around the objects within 

images.   



  

When we use bounding boxes in images, these two outcomes are used for further 

evaluation of performance. We use the concept of Intersection over Union (IoU) which 

is a computation of the ratio of intersection and union of ground truth he bounding box 

and the prediction bounding box. 

 

For instance, assuming the box with red boundary is the ground truth and the other, 

prediction, an IoU of ‘1’ will mean that both boxes coincide perfectly. We set a suitable 

value for the IoU threshold to determine if the OD is valid or not. [24] 

Based on this threshold, we can classify object detection into 2 categories and an 

additional 2 that relate to undetected objects: 

 True Positive (TP) – IoU ≥ threshold or correctly classified 

 False Positive (FP) - IoU < threshold or wrong detection 

 False Negative (FN) – ground truth not detected. 

 True Negative (TN) – every part Not useful in OD task 

Note that the threshold can be set to any arbitrary value as there is no justification for the 

value.  

Based on this, it means metrics gotten with these parameters are only for one setting. As 

metrics to evaluate the performance of the model, we sometimes use precision and recall. 

Precision and recall are quite familiar concepts.  

 

Recall (sensitivity) is a probabilistic measure that a test will yield true positive for objects 

classify an object to its correct class and is given by the formula:  

Recall (Sensitivity) =
TP

TP + FN
 ˣ 100% 

 
 



  

Precision on the other hand, measure the degree of accuracy of positively determined 

classification, given by the formula: 

 

Precision =
TP

TP + FP
 ˣ 100% 

 

Depending on the developer of a model, there are several other metrics that can be used 

to evaluate the performance of a model within a specific area of application. Examples 

of these other metrics include: Average Precision (AP), Interpolated AP, AP (Area under 

curve AUC), mAP (mean Average Precision), Localization Recall Precision (LRP) etc.  

  

    

  



  

3 METHODOLOGY 

In this section, we describe briefly the architecture showing how processes flow from setting 

up the systems, data collection, processing and evaluation. We also describe the tools and 

techniques employed with some explanation on why they are chosen. We used a vehicular 

software platform that supports autonomous driving and provides functionalities for 

sensors. Our principal computer runs on the Windows 10 Enterprise operating system while 

we setup a virtual machine (VM) (Oracle Virtual Box) which runs the Ubuntu Xenial (16.04 

LTS). The latter is the same as for the Iseauto project to maintain consistency. On the virtual 

machine, we installed and configured the ROS and Autoware environment. 

 Architecture 

Figure 6 shows the architecture of the proposed method. We began by setting up the 

BeamNG.research video game and test run for integrity. Note that the forked version 

available on the project site5 does not provide as much functionality. So we got a more 

upgraded version from the development team.  

Although we considered two setup arrangement for the BeamNGpy interface – one is to 

have it on the local machine and then connect it directly with the video game; the other 

is to set it up within the VM together with the ROS+Autoware setup using a pipeline 

and then another developing another interface to communicate with environment located 

on the local computer, the former was used because of the challenges faced in trying to 

work with the latter. 

Once this setup is established, we can then extract relevant data for the purpose of our 

work. Geometric resources in the gaming platform are communicated to the Graphics 

Processing Unit (GPU) [7]. More specifically, we will use LiDAR and camera together 

with the vehicle agent to scan street scenes. Simulated data provides for pixel, photo-

realistic and annotated data. Pixel-level annotations provide more accurate details about 

ground truth objects. The color images can serve as training dataset while annotated 

images as validation dataset. Later, we validate Yolo v3 with color images obtained 

from the simulator to see how well the model performs. 

                                                           
5 https://projects.beamng.com/projects/research/repository 

https://projects.beamng.com/projects/research/repository


  

 

 

 

Figure 6: Architecture 

 

 Technical platform and tools  

 BeamNG.reseacrh 

BeamNG.research [25] is BeamNG GmbH’s non-commercial, versatile and open source 

platform for academic studies and research projects in development related to vehicles. 

Its versatility in automotive industry is hinged on the several features it has - state-of-

the-art soft body physics, collision detection, interoperability with other standards, image 

annotation, simulation, aerodynamics and hydrodynamics, sensor inclusiveness and 

autonomous vehicle testing.  



  

 

Figure 7: BeamNG environment 

 

Beamng.research and beamng are used interchangeably throughout this thesis. The 

beamng simulator provides good physics support for crash and gaming activities. It also 

avails some of the sensors. As of the time of working on this project, there was already 

availability of LiDAR and camera sensors (two which were used in this thesis) although 

not with sensor fusion capabilities. Other sensors, like GPS and Radar are a work in 

progress.  

Sensors 

 Forces/Accelerations in high resolution on 2k points in the car 

 LiDAR laser scanner currently equipped to capture 2.2million points at a rate of 30 

FPS 

 GPS positioning - WIP 

 Ultrasound / Distance - WIP 

 Radar - WIP 

 Multiple cameras - WIP 

 Sensor setup changeability and data re-extraction (Sensor fusion) – WIP 



  

Requirements 

Table 3: BeamNG Requirements6 

Recommended Minimum 

Normal setting at 1080p Lowest setting at 720p 

 OS: Windows 10 64-Bit 

 CPU: AMD Ryzen 7 1700 3.0Ghz / 

Intel Core i7-6700 3.4Ghz (or better) 

 RAM: 16 GB RAM 

 GPU: AMD R9 290 / NVidia GeForce 

GTX 970 

 DirectX: Version 11 

 Storage: 20 GB available space 

 OS: Windows 7 Service Pack 1 

 CPU: AMD FX 6300 3.5Ghz / 

Intel Core i3-6300 3.8Ghz 

 RAM: 8 GB RAM 

 GPU: Radeon HD 7750 / NVidia 

GeForce GTX 550 Ti 

 DirectX: Version 11 

 Storage: 15 GB available space 

 

The camera sensor provides various types of image data depending on the perspective 

of the user. It can provide the following types of data:  

 Colour images that can be converted to different formats within the MIME standard 

e.g. PNG, JPEG, BMP, GIFF etc. 

 Pixel-wise depth 

 Pixel-wise object annotation 

A single camera sensor can be configured to provide any or all of these data at once, 

ensuring they all align to the same perspective. The camera sensor is set up with a fixed 

offset position and directional vector to face relative to the vehicle. This means as the 

vehicle moves and rotates, the camera is moved and rotated accordingly. Apart from the 

position and orientation, the image can further be customized with the FoV angle the 

camera should have, the resolution of the image(s) it outputs, and the near/far plane at 

which objects get clipped from view. The type of camera sensor data to provide can be 

indicated using boolean bit for the corresponding type. By default, they are all set to 

“False” and one needs to specify what type when polling the sensors while driving. 

                                                           
6 https://wiki.beamng.com/Requirements 

https://wiki.beamng.com/Requirements


  

Parameters: pos (tuple): (x,y,z) this tuple represents the camera's position offset relative 

to the vehicle it's attached to. direction (tuple): (x,y,z) tuple expressing the direction 

vector the camera is facing. fov (float): The Field of View of the camera. resolution 

(tuple): (width, height) tuple encoding the camera's output resolution. near far (tuple): 

tuple of the distance beyond which and after which geometry gets truncated. colour, 

depth and annotation are all (bool) flags and determine whether to output colour, depth 

or annotation information respectively. 

The Lidar sensor provides 3D point clouds representing the environment as detected by 

an emitting laser pulse from the simulator vehicle. The lidar parameters provided in this 

simulator are similar to those of the Velodyne HDL-64E lidar7. The position, range, and 

refresh rate of this sensor can be modified as deemed suitable. 

 BeamNGPy 

Although beamng.research offers a GUI-based method for starting and configuring the 

simulator, it still offers an interface to programmatically interact with the simulator. The 

forked video game uses a Python interface called BeamNGpy, which is an official library 

that allows make remote controlling of the simulation including the vehicles possible. 

Vehicles (known as agents) and environment may be configured with different sensors 

that facilitate simulated sensor data such as a feed from camera, that provide options for 

pixel-perfect semantic annotation and depth values or a simulated LiDAR sensor [26]. 

Table 4: Requirements for BeamNGpy 

Module Version 

Click 7.0 

Jinja2 2.10.1 

msgpack-python 0.5.6 

numpy 1.16.3 

Pillow 6.0.0 

PyOpenGL 3.1.0 

scipy 1.2.1 

 

                                                           
7 https://velodynelidar.com/products/hdl-64e/ 

https://velodynelidar.com/products/hdl-64e/


  

The package can be added to the python libraries existing in the computer by simply 

installing the beamngpy package. After installation, the package can be simply imported 

into the python code. This interface provides a pipeline for extracting data from sensors 

– images, speed, direction, point cloud etc. and also a means for imputing loopback 

closure for steering and control during simulation in real time.  

 

Figure 8: BeamNGpy usage8 

The game uses two virtual machines, one for the game engine and the other for each 

vehicle (regarded as an agent each having its own operating system) in the simulator and 

is written in the open-source software, Lua.   

“Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports 

procedural programming, object-oriented programming, functional programming, 

data-driven programming, and data description.”9   

We can change the behavior of the game by making a number of key presses with the 

GUI and subtle alterations in the code using the python interface, making it  possible to 

run iterations during development faster [25]. We tried this all through our work 

adjusting behavioral parameters until suitable. One can better appreciate the Lua 

                                                           
8 https://github.com/BeamNG/BeamNGpy 
9 http://www.lua.org/about.html 

https://github.com/BeamNG/BeamNGpy
http://www.lua.org/about.html


  

programming language as used for the development of beamng.research going through 

the beamng.drive documentation10. 

 ROS 

The Robot Operating System (ROS)  [27, 28] is a multi-platform framework which 

provides a rich variety of packages, nodes, libraries and tools used for build robot 

software and applications with the aim of simplifying the tasks related to build robust 

and complex robot behaviors. This is also a good framework that support collaboration 

of people working on the same project. 

ROS packages created, reside in a workspace directory. The command for creating a 

ROS package is:  

catkin_create_pkg package-name 
 

Package name in our case, is pointcloud. The building blocks of implementing a ROS 

program includes nodes, messages, topics, and services. All of these resources are 

collectively known as graph resources and individually, as graph resource name [29]. 

The main mechanism for interacting with the ROS system is with nodes. They are the 

process objects that are able to perform computation.  

From the programmer’s / user’s prospective, “ROS Computation Graph” is kind of 

“front-end”. It is a peer-to-peer network of “nodes” and “services” processing the data 

and exchanging it in the form of “messages”. A ROS node is an executable software 

module that perform computation. Nodes help to maintain the modularity of ROS in the 

sense that each node is, ideally, designed to perform single task. Nodes in ROS 

communicate via passing “messages”. Each message has a type that is specified by the 

type of data it carries. So simply put, a message is a data structure consisting of type 

fields of integer, float and Boolean, etc.  

Each message is shared among the nodes under a specific “topic”. The producer node 

of the message “publishes” the topic and the user of that message “subscribes” to that 

topic. Although the data sharing among the nodes via the publishers and subscribers 

provide a flexible mode of communication, it is not very suitable for request / reply 

                                                           
10 https://documentation.beamng.com/index.html 

https://documentation.beamng.com/index.html


  

mode of communication. Because it is one-way data communication. This deficiency is 

overcome by “services”. A service is a request/reply mode of communication. A 

service node has both the “request message” and “reply message” structures. A client 

which needs to “use” a service sends a request message and the waits for the “response 

message” from the provider of the service [28].   

 

Figure 9: ROS basic concept 

 

Our choice for the ROS framework is because the framework is mature and large 

community base. It is widely used across board from academics, to research and to 

robotic development projects. ROS also provides other packages that facilitate 

autonomous systems development e.g. RViz for 2D and 3D visualization e.g. images 

and laser scan data and ROSBAG for summarizing topic messages into a bag that can be 

replayed within a ROS computation graph. 

 Autoware  

Autoware is an open source research and development platform used for autonomous 

driving technology by researchers, enthusiasts, developers, and students. It is built upon 

ROS 1 and has evolved over the years to support future projects. In the Autoware 

portfolio are, Autoware.AI, Autoware.IO and Autoware.Auto which is based on ROS 2 

and has a redesigned  architecture [30]. It offers a ROSBAG enabled simulation 

environment for testing without using real time autonomous vehicles. This is useful for 



  

our thesis because both the driving setup and AV development stack reside in different 

computers.  

In a ROS-based computer, autoware can provide functions for object detection, 

localization, path following, ego vehicle motion controls and 3D mapping. It also 

provides interfaces for controlling autoware (Runtime manager) and for 3D visualization 

of functions (RViz).  

 System requirements 

Table 5 shows different system requirements for the tools we used in this thesis. Note 

that some of the tools normally have frequent updates which may have happened 

during the course of our thesis. 

Table 5: System requirements 

Machine/Tool Specification 

Host PC Memory: 256GB SSD 

Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 

1.80GHz 

Installed RAM: 16.0 GB (15.9 GB usable) 

Type: 64-bit Operating System, x64-based processor 

DirectX: 12 

Virtual Machine (VM) VirtualBox Graphical User Interface 

Version 6.1.10 r138449 (Qt5.6.2) 

Installed OS: Ubuntu 16.04 (Xenial)  

Base Memory: 8 GB 

Processors: 4 

Acceleration: VT-x/AMD-V, Nested Pegging, KVM 

Paravirtualization 

Storage: 48.36 GB 

ROS Distribution: kinetic 

Version: 1.12.14 

Autoware V 1.8/V1.12 

Python Python 3.8.3 64-bit 



  

 Summary 

In this chapter, we highlighted the different tools and the setup of the study. We 

demonstrated the system requirements to ensure proper functioning of setup. At the 

same time, we identified some key installation processes. In the next chapter, we look 

at how we collected experimental data and the processes involved in data manipulation.  



  

4 EXPERIMENT 

In this chapter, we demonstrate how we collected our data, the tools involved and how we 

ordered our folder. We also attempted to identify key actions that aided our data collection 

and data processing.   

As we have identified in Chapter 3 earlier, the setup involved the use of two operating 

systems (Windows 10 Enter on the host PC where the simulator is run and Linux Ubuntu 

16.04 on the VM where our robot operating system and the autoware are housed). Although, 

with the host being slightly below the specified system requirements, we were able to use it 

to achieve the minimum results from data generation to object detection. A video 

demonstration of the latter can be found in the link in the footnote section11. The whole 

process is described in fuller details in the paragraphs below. 

A python code that leverages the beamNGpy interface was used to interact with the game 

as mentioned previously. Code can be found in link in the Appendix item 1. The vehicular 

software platform offers a number of scenarios that correspond to typical settlement types 

in the real world. E.g. east_coast_usa, port, island, canyons, west_coast_usa etc. 

We opted for the west_coast_usa scenario because it is the default used by the software 

providers and on inspection, appears to be quite sophisticated. The west_coast_usa map 

offers a good variety of environmental scenery similar to where the ISEAUTO vehicle is 

expected to operate – a metropolitan urban settlement with many elements that highlight 

modern realities. 

 

Figure 10: Minimap of west_coast_usa scenario 

                                                           
11 https://shorturl.at/desS2 

https://shorturl.at/desS2


  

 

We selected 2 sensors that will be attached to the ego vehicle in the game for getting data 

from the game – a camera and a Lidar. We have presented in Table 6, some parameters 

specified for each sensor used in the experiment. 

Table 6: Specification  of sensor parameters 

Parameters Camera Lidar 

*Position (tuple) [1,0,1.6] - 

Direction (tuple) [0,1,0] [0,1,0] 

*Offset (tuple)/(m) - [0,0,1.6] 

fov (°) 60 - 

Resolution (tuple)/pixel [1392, 512] - 

Near_far (tuple)/m [0.01, 120] - 

Vres - 64 

Vangle (°) - 26.9 

rps (real number) - 2200000 

fps (hz)/refresh rate - 20 

Angle (°) - 360 

max_dist (m) - 120 

 

* parameters are with respect to the position of the vehicle 

 Guide to some parameters used in the table 5: 

 offset - refers to coordinates specifying the position of the Lidar sensor relative to the 

ego vehicle’s. 

 fov – (field of view) refers to the range of view in the observable world around the 

sensor. 

 Vres (vertical resolution) indicates the number of vertical lines sampled by the Lidar 

 Rps (rays per second) is similar to pulse per second for common lidar sensors 

available. 

 Fps (frames per second) – how many frames the sensor can shoot in one second, also 

called the refresh rate 

 Max_dist – (maximum distance) beyond which any ray of the sensor that falls within 

with not be displayed in the sample data. 

 

We had the liberty to choose from a number of spawn points as shown in the Figure 11 below. 

Also, we modified the scenario parameters in the game to allow for scanning through every area 

of the map automatically. This is done by setting the ai_set_mode() method which is an 

inbuilt simulator's AI for the vehicle, to span. 



  

 

Figure 11: Different spawn points available in the west_coast_usa scenario. 1 L-R: Chinatown, 

Dirttrack; 2 L-R Dockyard, Dragstrp; 3 L-R Highway, Industrial; 4 L-R Racetrack, 

Redwood_forest 

 

 

 



  

Once the beamng simulator is started, we can see the different communication messages on 

the game console window. Furthermore, there is a logging library that enables functions and 

variables be seen on the python compiler used in running the simulator program. 

 Ground truth data from BeamNG.research 

The path to the beamng simulator executable is set in the system variable. The 

BeamNGpy instance runs the simulator from the given path and communicates over the 

localhost server on port 64526 (localhost:64256). 

Using the find_static_objects() method provided in the documentation, we 

were able to determine that there are at least, 1567 static objects (members of the 

TSStatic class) with their positions in the west_coast_usa scenario. In this thesis, we 

focus only on stationary objects which the method provides for. Hence, there are no 

instances of pedestrian and/or moving cars. The reason this is so, static objects within 

the world readily provide ground truth information as they would not change no matter 

the number of iterations we make in the simulator. We would consider pedestrians and 

vehicles in future works. With the aforementioned, we can obtain ground truth 

information about objects along the path of the ego vehicle.  

As we drive around the road, we adopt a file system structure similar to that used in the 

KITTI dataset for both the images and point cloud data gathered from our simulations. 

We use the KITTI point cloud dataset (KITTI-PC) as a point of reference. The KITTI-

PC  consists of 7481 and 7518 training and testing images respectively [31]. This dataset 

provides benchmarks evaluation for 2D object detection and orientation estimation, 3D 

object detection, and bird's eye view analyses.  

We polled all the sensors in the game with the poll_sensors() method on every 

iteration to capture data from each sensor attached to the vehicle in the shared memory. 

We captured a total of 200 frames. The idea is to ensure that we get as many varied 

scenes as possible, to diversify the difficulty level for the object detection. Each frame 

instance, collects images from camera and point cloud data from the LIDAR. We also 

stored information about the vehicle position at the instance frames are captured, 

timestamps and sensor data. 



  

 

Figure 12: Snapshot of file folder structure used in the project 

 Images and LIDAR points 

As mentioned above, our ego vehicle is equipped with camera and LiDAR sensor. The 

camera is the visual sensor providing the of images of the environment, from which we 

convert to RGB format. The LiDAR provides the depth data in the form of point clouds. 

In our ROS package pointcloud, we gather all the runtime processes in the launch file 

called launcher.launch. This helped us to run multiple nodes at the same time like talker 

(publisher node), listener (subscriber node), rviz and rqt_graph nodes.  

 Images 

The images are gotten with the invocation of the camera sensor object in the simulator. 

The raw images are converted to RGB color format and stored as PNG files (we 

attempted to store in the irreversible lossy compression format JPEG, in a bid to aid data 

storage, handling and transmission bearing in mind trade-off for image quality but 

encountered some challenges with the output being somewhat distorted). PNG graphics 

support lossless compression of data.  

We converted the same raw images to their annotated format and stored them likewise 

as PNG files. The annotated images represent ground truth data about object boundaries 

within image frames. In the ROS program, the publisher node (talker) images are being 



  

published under the /image_view topic. Images published on this node are first 

converted to  

 Point cloud 

The Lidar points were collected in the form of xyz coordinates into an array variable. 

This was then appended in a file as comma separated values (CSV). This is a practical 

way of storing such data as csv files can be converted to other point cloud formats 

including .xyz and .bin. In the publisher node in the ROS program, the point cloud data 

is being published under the topic /pointcloud. 

 Visualization of data in RViz 

In our project, we used the in-built ROS visualization package called RViz to visualize 

both the images produced by the camera sensors and the point cloud data generated by 

the LiDAR. RViz comes as one of the packages accompanying ROS installed in the 

Ubuntu OS on our virtual machine. It is a 3D visualization tool for ROS. RViz lets us 

see what our robot is seeing, thinking or doing. Rviz understands sensors and state 

information like Laser Scan, cameras, point clouds and coordinate frames. Rviz is 

extensively used for debugging robot applications. 

A sample image captured is provided in Figure 13 below. The corresponding point 

cloud data of the image frame is also shown in Figure 14. 

 

 

Figure 13: Sample image captured visualized in Rviz 



  

 

Figure 14: Sample point cloud data visualized in RViz 

 

 ROSBAG conversion 

To summarise the content of our package and ensure that we can easily reproduce the  

collected data, we recorded the messages from the ROS topics /image_view for 

images and /pointcloud for point cloud into a rosbag, This is used for further 

processing while testing our object detection  model in chapter 5. This was done by 

running the following command in a the ~pointcloud/bagfiles folder within the 

pointcloud ROS package. 

rosbag record –b 0 -a 
 

The ‘-b’ flag sets the buffer size (0 as infinite) and ‘–a’ (all) flag to record all incoming 

topics. The rosbag file was played back and messages from both the /image_view 

and /pointcloud topics were read to test object detection algorithms below.  



  

 Summary 

In this chapter, we demonstrated how we collected our data, the tools involved, the data 

formats and how we ordered our folder. We also attempted to identify key commands 

that aided our data collection and processing such that same can be reproduced. In the 

next chapter, we are going to show how we validated the object detection model for our 

images and some performance metrics. Table below summarizes the outputs of our 

method and the purpose of each. 

Table 7: Summary of outputs and their purpose 

Source Output Purpose 

Camera color image (.png) 
To reproduce camera stream on 

ROS/Autoware 

Camera 
Pixel-wise annotated 

image (.png) 

validation object detection on 

ROS/Autoware 

Lidar Pointcloud (.csv) 

Reproduce pointcloud data in 

ROS/Autoware and for 3D visualization in 

RViz 

Time 

(Python method) 
Timestamps 

For us to inspect the time gap between 

successive frames of data collection from 

all the sensors. 

Both image and 

pointcloud data 
Bag file (.bag) 

Full recording of the data streams for 

playback in ROS/Autoware 

Darknet (Yolo 

v3) 

Bounding box images 

(.jpg) 

For us to compare the bounded objects and 

the annotated images 

  



  

5 VALIDATION 

To validate our prototype of the proposed method, we ensured that we are able to read data 

by writing commands through the Python interface provided by the game engine and that 

we are able to read collected via ROS (publish and subscribe) nodes. We were able to get 

ground truth annotated data which has been obtained from the simulator; we did not have 

to manually mark the boundaries of target objects in the image.  

 Validating with Object Detection 

To test our method against  image detection baseline, we examined image-based 2D 

object detection algorithm, Yolo v3 (available in ros darknet package)12 on the images 

being published. We have opted for Yolo v3 detector based on the outcome and 

recommendation of the work from [20] on the ISEAUTO project and also the popularity 

of the detector as a fast and more accurate object detection algorithm. We installed the 

ROS darknet [32] folder into our workspace and built the project. We ran the yolo launch 

file from inside the launch folder to read images from the /image_view topic by 

modifying the yolo_v3 launch file suitably. We then played our previously recorded bag 

file to publish saved image files. The darknet package offers a GUI for viewing the 

outcomes of object detection. We saw that the outputs matched the input images without 

any errors. 

Annotation of objects within images helps us to accurately identify objects using a self-

driving car software. Examples of objects of concern are pedestrians, traffic lights, stop 

signs, cars, animals, fire hydrants etc. This is the underlying concept for computer vision 

technologies [33]. From our beamng simulation, we were able to generate pixel-wise 

annotated images that provided ground truth information without the need for the usage 

of bounding boxes that require much effort of tagging an image with a class. In Table 

8, we identified some of the  annotation objects. A qualitative comparison of the 

annotated objects and the output of the Yolo v3 object shows that this proposed method 

is suitable for generating ground truth data. 

A sample of the results obtained is shown in Table 8 below. 

                                                           
12 https://github.com/leggedrobotics/darknet_ros 

https://github.com/leggedrobotics/darknet_ros


  

Table 8: Table showing captured color image, annotated image of ground truth and object 

detection output. 

 
Sample 1 Sample 2 

Color image 

from 

simulator 

  

Annotated 

image 

obtained 

from 

simulator 
 

 

Yolo v3 

detection 

output with 

bounding 

boxes  

 

 

 

From qualitative check, we observed some slight shift in the frames between the color 

images and annotated images. This was due to the split second difference in the time when 

the data get stored in the computer. Although, the OD model was able to identify some 

objects that coincide with the ground truth, not every object was identified in processed 

frames.  

 



  

 Performance Measures (Precision and Recall) 

Recall the formulas for precision and recall highlighted in 2.2.3., we calculated our recall 

and precision values based on the total number of images that were processed by Yolo 

v3. These two measures are important because, recall helps us determine the 

completeness of our results and precision tells us about the relevance of our results.  

Assumptions 

 IoU threshold is relatively small and any observable correctly determined object is 

considered TP. 

 Ground truth objects are those objects within all images that are also available in 

object classes in the Yolo v3 Common Objects in Context (COCO) names e.g. traffic 

light, stop sign, fire hydrant and potted plant 

Since our ground truth is provided as pixel-wise annotations, it means detections that 

closely conform to ground truth are treated as TP, and detections that do not conform to 

observable ground truth (wrong classifications) are treated as FP. We also consider 

bounding boxes with no observable object as FP. Similarly, FN relate to objects within 

the processed images that should have been identified but were not.  

The darknet_ros node topic /darknet_ros/bounding_boxes, publishes 

messages about the performance of the OD like fps and confidence score. By writing a 

subscriber node program to read messages from the topic, we were able to collect those 

pieces of information. Out of 200 read frames, on an NVIDIA GeForce RTX 2070, with 

93% GPU load and an average speed of 26.74 fps, the Yolo v3 algorithm processed 41 

images. The two measures values were calculated based on the identifiable objects in 

the images processed. We are able to do this manually because the number of frames 

involved are minimal. 

Table 9: TP, TN, FP, FN Derived Measures 

Definition Total Number Recall Precision 

TP 66 

0.6408 0.7952 
FP 37 

FN 17 

TN NA 



  

 Summary 

In this chapter, we validated Yolo v3 by our method. We determined the precision and 

recall values of the object detection model as 0.7952 and 0.6408 respectively. These 

results show that our method is suitable for the generation of ground truth data.  



  

6 FUTURE WORK 

In our work, we used a monolithic weather condition all through. We did not explore 

multiple environmental conditions in which may further strengthen the adequacy of the use 

of purely synthetic ground truth data. Thankfully, the simulator offers features to modify 

environment conditions like time of day, weather or even the spawn location. Further work 

can be done in this regard, to determine what impact they would have on the outcome of 

object detection algorithm(s) for autonomous driving. More work should be done to see how 

synthesized image parameters play a part in the usefulness of the data. 

Owing to limitations due time constraint, and the platform documentation, which made 

referencing a bit challenging some aspects of the study can be further improved.  For 

instance, while we were able to get location of objects within map, we are unable to 

determine what type of objects are located in those positions. This study also lacked the 

computational requirement needed to get a smooth continuous stream of data from the 

simulation. This would help us to process in our ROS system, data at a more accurate frame 

rate thereby giving us a stream that can reflect real life driving. Also, since our ROS program 

was written in Python, the program can be re-written in C language to provide a robust and 

faster system. 

As we have been able to establish the use of synthetic data from this new software platform, 

we can do a comparative study of different simulators and game engines available (e.g. 

LGSVL simulator13,14 (2020) available in Autoware, CARLA15 (2017) etc.) against some 

set benchmarks in the future. In this study, our focus was ground truth data for object 

detection and although this study was validated with object detection, we can adopt the 

prototype method introduced to explore more complex autonomous vehicle tasks like 

localization, path planning and even open area driving. The platform already has in built 

functions for controls and waypoints following which can be explored in future studies.  

In principle, we can extend the validation done, by running lidar based object detection. 

Although it is more challenging task to deal with, they have proven to provide more accurate 

result. We can also employ strategies for fusion of vision and point cloud data as 

demonstrated in [34]. Furthermore, we did validation using a bounding box annotation 

                                                           
13 https://content.lgsvlsimulator.com/ 
14 https://github.com/lgsvl/simulator 
15 https://carla.org/ 

https://content.lgsvlsimulator.com/
https://github.com/lgsvl/simulator
https://carla.org/


  

model; in future work, we can explore algorithms (MASK R-CNN and PANOPTIC FPN) 

that identify objects at pixel-level for better comparison with the annotated ground truth. As 

a result, we can improve iterations during development of autonomous vehicle by reducing 

human-effort in setting up systems for and generation of ground truth data. 

  



  

7 CONCLUSION 

The aim for this thesis is to generate ground truth from a simulator for object detection 

algorithm in autonomous vehicles. This was done by exploring some commonly used 

sensors in-built in the simulator. Furthermore, the implementation needs to be easy to 

produce and be improvable. We did check out the camera and LiDAR agents within the 

simulator and exploited the access we have to the game through the BeamNGPy python 

interface. 

We created a prototype method that gets data from beamng.research by controlling and 

accessing the game via beamngpy. We generated 200 colored images and annotated images 

in PNG format from the camera sensor and also generated 200 captures of pointcloud data. 

We went further to visualize the images in RViz by converting them to OpenCV “bgr8” 

format. For the point cloud, we generated 200 comma separated value files corresponding 

to each capture of point cloud data. In a similar way, we transformed this point cloud data 

in our ROS program to Pointcloud2 type for visualization in Rviz.  

Data streams were recorded in a rosbag file for further simulations and validation tasks. We 

used different metrics to specify system and detection performance. Our work shows that 

this method is feasible for creating ground truth data. Although, we faced some challenges 

with working with the simulator, with further exploration and support within the developer 

community we will be able to achieve better and more practical results. The following 

limitations were identified with use of the proposed method: 

 The simulation has wavery driving compared to real-life which means that real time 

driving may not be of desired quality. 

 The game is currently only supported on the Microsoft Windows. Other Operating 

System and Platforms, Virtual Machines, Emulators and compatibility layers are not 

supported.6 

 Multiple agents are not configurable at the moment. 

 Documentation for this forked version does not provide enough detailed information. 

 Ground truth bounding boxes of frames in the surrounding of the ego vehicle are not yet 

included in the camera sensor functionalities. 

In conclusion, we demonstrated a prototype method to achieve ground truth data using the 

beamng.research simulator by having sample data generated and showing the plausibility 



  

with visualizations in the ROS environment using different ROS functionalities. We also 

validated the Yolo v3 object detection model with our data and evaluated our results. With 

the aforementioned, more studies need to be carried out to explore the use of simulated 

environments data for the development of autonomous vehicles.  

There are well founded prospects in the field of autonomous vehicles, ranging from sensing, 

perception, decision making, sensor fusion, path planning to control and steering. We have 

provided in the Appendix section, some very recent development in the autonomous and 

computer vision space that may be of interest to the reader.  
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Appendix 

 Link to repository containing code used in beamng python interface for interacting 

with the simulator, ros-based code for reading collected images and LIDAR point 

cloud data for visualization 

https://gitlab.cs.ttu.ee/juadig/beamngresearch 

or on https://bitbucket.org/ask4jubad/beamngresearch/  

 

Access to repository granted upon request to ask4jubad@yahoo.com. The repository contains 

a read me file for project description on how to use some parts of the code base. Please note 

that the paths used in the code may not exist, so you would have to figure it out as it suits 

appropriately for your use. 

 

 Useful links used during the thesis 

 BeamNGpy documentation 

https://beamngpy.readthedocs.io/en/latest/api/beamngpy.html 

 BeamNGpy github repository 

https://github.com/BeamNG/BeamNGpy 

 ROS Documentation 

http://wiki.ros.org/Documentation 

 Autoware-AI repository 

https://github.com/Autoware-AI/autoware.ai 

 Further reading and viewing 

 https://towardsdatascience.com/3d-object-detection-using-

lidar-data-for-self-driving-cars-ee0eb0e6389e 

 https://towardsdatascience.com/lidar-3d-object-detection-

methods-f34cf3227aea 

 https://www.youtube.com/watch?v=b5TZmefWNVM 

https://gitlab.cs.ttu.ee/juadig/beamngresearch
https://bitbucket.org/ask4jubad/beamngresearch/
mailto:ask4jubad@yahoo.com
https://beamngpy.readthedocs.io/en/latest/api/beamngpy.html
https://github.com/BeamNG/BeamNGpy
http://wiki.ros.org/Documentation
https://github.com/Autoware-AI/autoware.ai
https://towardsdatascience.com/3d-object-detection-using-lidar-data-for-self-driving-cars-ee0eb0e6389e
https://towardsdatascience.com/3d-object-detection-using-lidar-data-for-self-driving-cars-ee0eb0e6389e
https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea
https://towardsdatascience.com/lidar-3d-object-detection-methods-f34cf3227aea
https://www.youtube.com/watch?v=b5TZmefWNVM


  

 https://towardsdatascience.com/yolo-v4-optimal-speed-

accuracy-for-object-detection-79896ed47b50 

 

 Computation graph of ROS nodes and topics 

 Without debug 

 



  

 With Debug 

 

 Submodules currently available within the beamngpy package: 

Submodules 

.. automodule:: beamngpy 

beamngpy.beamng module 

beamngpy.beamngcommon module 

beamngpy.scenario module 

beamngpy.sensors module 

beamngpy.test module 

beamngpy.vehicle module 

beamngpy.visualiser module 

 

 



  

 NVIDIA System Information used for validation 

+-----------------------------------------------------------------------------+ 

| NVIDIA-SMI 440.100      Driver Version: 440.100      CUDA Version: 10.2     | 

|-------------------------------+----------------------+----------------------+ 

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | 

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. | 

|===============================+======================+======================| 

|   0  GeForce RTX 207...  Off  | 00000000:01:00.0  On |                  N/A | 

| N/A   83C    P0    79W /  N/A |   2673MiB /  7982MiB |     93%      Default | 

+-------------------------------+----------------------+----------------------+ 

                                                                                

+-----------------------------------------------------------------------------+ 

| Processes:                                                       GPU Memory | 

|  GPU       PID   Type   Process name                             Usage      | 

|=============================================================================| 

|    0      2405      G   /usr/lib/xorg/Xorg                           499MiB | 

|    0      2552      C   ...space/devel/lib/darknet_ros/darknet_ros  1698MiB | 

|    0      2582      G   /usr/bin/gnome-shell                         206MiB | 

|    0      4142      G   ...AAAAAAAAAAAACAAAAAAAAAA= --shared-files   112MiB | 

|    0     13219      C   /usr/lib/libreoffice/program/soffice.bin      97MiB | 

|    0     15278      G   ...uest-channel-token=16070837118886536314    42MiB | 

|    0     31213      G   /usr/bin/nvidia-settings                       3MiB | 

+-----------------------------------------------------------------------------+ 
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