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Abstract—Industry and research organizations increasingly
rely on simulation platforms to facilitate the development and
validation of Cyber-physical Systems (CPSs). The main factors
for this trend are simulation’s cost-efficiency and the possibility
of evaluating the system’s performance early on and through-
out the development cycle in a fully controlled environment.
However, simulations need to meet stringent functional and non-
functional requirements to benefit development and debugging
activities. In particular, high simulation accuracy and the ability
to systematically generate relevant test scenarios are paramount
for effectively assessing CPSs’ behaviors in nominal and critical
test scenarios. This paper (i) discusses soft-body simulation and
procedural content generation relevance to achieve the systematic
generation of physically accurate virtual tests; (ii) and presents
BeamNG.tech a novel simulation framework featuring both soft-
body simulation and procedural content generation. Hence, we
report on the main advantages and research results in testing self-
driving car software enabled by BeamNG.tech. Finally, we reflect
on the central role of simulation-based continuous integration and
testing pipelines to improve current CPSs development practices.

Index Terms—Software Testing, Cyber-physical Systems, De-
vOps, Virtual Environments.

I. INTRODUCTION

Cyber-physical Systems (CPSs) are systems in which algo-
rithms analyze sensor data collected from the surrounding en-
vironment to control physical actuators. Emerging CPS—from
medical monitoring systems and devices, industrial robots, and
autonomous transportation systems—are expected to play a
crucial role in future generations’ quality of life and the global
economy [8]. These CPSs typically interact with humans as
well as other systems in highly dynamic and unpredictable
environments. Thus, guaranteeing CPSs’ reliability and safety
are critical challenges to address, primarily when CPSs operate
in critical scenarios, such as driving in traffic or detecting
wildfires [40].

Current CPS development practices have several limitations
and drawbacks, including (i) the limited ability to repeat tests
under the same conditions due to ever-changing environmental
factors [26]; (ii) the difficulty to test the systems in safety-

critical scenarios, with the goal to avoid irreversible damage
causes by dreadful outcomes [22], [38], [39]; (iii) not being
able to guarantee the system’s reliability and safety in its
operational design domain due to a lack of testing under
a wide range of execution conditions [25]. Consequently,
new development practices, environments, and frameworks are
needed to address the fundamental development challenges
of observability, testability, and predictability of CPSs and
support their foreseen wide-spread adoption.
Simulation-based testing of cyber-physical systems. CPSs
require flexible development and verification strategies
to account for Model-in-the-Loop (MiL), Software-in-the-
Loop (SiL), and Hardware-in-the-Loop (HiL) paradigms [2].
CPSs are also more difficult and expensive to test and integrate
than traditional software systems [19], [40]. Common reasons
for this are that the final version of the hardware is often avail-
able only late, and integrating hardware components requires a
great deal of manual effort. A typical approach to dealing with
CPSs safety and testing requirements is to develop hardware
proxies, such as system simulators and digital twins [23] (see
Figure 1). CPSs safety requirements are nowadays evolving
under the direction of organizations responsible for software
system and development standardization practices and policies
(e.g., consider the ISO214481 and ISO262622 standards).
According to these organizations, simulations can facilitate
testing of CPSs safety requirements, as they are inexpensive
and less dangerous than running the systems in real-life [7],
[11]. Consequently, the development and validation of CPSs
heavily rely on them.

In this context, we argue that simulators need to meet strin-
gent functional and non-functional requirements (e.g., accu-
racy, efficiency, photo-realism) to be beneficial for developing
CPSs. Additionally, they must also support the systematic
generation of test scenarios to effectively assess the behavior
of CPSs in nominal and critical conditions [13], [15].

1https://www.iso.org/standard/70939.html
2https://www.iso.org/standard/43464.html



Fig. 1. (Idealized) Development pipelines for Cyber-physical Systems.

Paper contributions and organization. This paper makes a
case for soft-body simulation as a necessary complement to
mainstream rigid-body simulations (Section II) and remarks on
the importance of enabling automation in both test generation
and execution also in the context of Cyber-physical Systems.
In detail, the main contributions of this paper are:
(1) we introduce BeamNG.tech, a novel simulation frame-

work provided by BeamNG GmbH featuring a highly
accurate and faster-than-real-time soft-body simulator and
an intuitive API for automatically generating virtual en-
vironments, collecting training and validation data, and
executing test scenarios (Section III).

(2) We summarize the latest results in research, education,
and industry enabled by BeamNG.tech (Section IV), and
discuss the most relevant state-of-the-art approaches on
CPSs simulation (Section V).

(3) We critically reflect on the path towards the future devel-
opment of BeamNG.tech and simulation-based continuous
integration and testing for sustaining the realization of
reliable and safe CPS evolution (Section VI)

II. SIMULATION APPROACHES FOR CPSS DEVELOPMENT

This section discusses the importance of simulation environ-
ments in developing and testing CPSs and the main simulation
approaches. We contextualize the discussions in the domain of
self-driving cars.
X-in-the loop activities in CPSs development. Several re-
searchers and practitioners advocate DevOps as a promising
approach for CPSs development [9], [40]. However, both in
traditional [9] and CPSs application domains, the state-of-the-
art of DevOps is still forming [40], and emerging practices
need validation in the wild. A recent survey by Törngren and
Sellgren [40] discusses how CPSs’ engineering deals with
the inner complexity of CPSs’ design and the challenges
that arise from the environments in which CPSs operate.
According to Törngren and Sellgren, while (semi-automated)
integration happens through software, there are several dis-
tinguishing characteristics between software and physical
systems that make co-designing hardware and software hard.
Those characteristics include entirely different approaches,
techniques, abstractions, platforms, faults & failure modes, and
development practices [40]. Törngren and Sellgren conclude

that to cope with the foreseen demand of CPSs at scale
and in multiple domains, CPS development and testing need
rapid prototyping, code/test generation, and various testing
phases [34] encapsulating X-in-the Loop (XiL) activities. In
XiL, the ’X’ indicates the target of development and testing
and typically refers to model (MiL), software (SiL), and hard-
ware (HiL). Hence, a typical CPS development pipeline needs
to efficiently and effectively integrate various XiL activities
to support development and evolution (see Figure 1) [34],
[40]. Simulations are becoming one of the cornerstones in
developing and validating CPSs, as they are heavily utilized
in various XiL activities and across the entire development
life-cycle. For example, simulations are currently used to
support the initial inception and requirement analysis (MiL),
Hardware/Software Co-design (MiL), design and testing of
software components (SiL), training and validation of Machine
Learning components (SiL), and testing and validation of the
deployed system (HiL).

Main simulation approaches. Many simulation technologies
have been developed to support developers in various stages
of design and validation. For instance in the self-driving cars
domain, developers resort to basic simulation models [17],
[36], rigid-body simulations [29], [42], and soft-body simu-
lations [13], [33] among others.

Basic simulation models, like MATLAB and Simulink
models, implement fundamental abstractions (e.g., signals)
but target mostly non-real-time executions and generally lack
photo-realism. Consequently, their usage as a means for in-
tegration and system-level software testing is limited, and
they are mainly utilized for model-in-the-loop simulations and
Hardware/Software co-design.

Rigid-body simulations approximate the physics of bodies
by modeling entities as undeformable bodies or as compo-
sitions of a limited number of rigid parts. Basic simulation
entities are three-dimensional objects such as boxes, cylinders,
and convex meshes [3]. Rigid-body simulations implement
a coarse approximation of reality; hence, they are not com-
putationally demanding and can scale well in the number
of simulated entities. They can capture object motions and
rotations but cannot deform or break the rigid simulation
elements. To illustrate this aspect better, let us consider a
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Fig. 2. An illustrative example of how BeamNG.tech can easily simulate the effect of flat tires. The plot shows the position of a simulated vehicle driving
on a straight segment of the road when the steering control is fixed and one tire is flat (in red and yellow). For comparison, the plot reports the trajectory of
the car when no tires are flat (in green).

scenario in which a car hits the curb while driving down a
road generating a sudden lateral force acting on the car’s parts
(e.g., tires, suspensions). Assuming the impact’s intensity is
not too high, in real life, the vehicle absorbs the impact as
its parts dissipate energy, possibly deforming. Consequently,
the resulting movement of the vehicle would be relatively
smooth. On the contrary, a standard rigid-body simulation
of this scenario would result in the (simulated) car having
a “unnatural” (i.e., discontinuous) behavior due to the curb’s
side wheel suddenly “jumping” from road level to the curb’s
top surface in whole.

Soft-body simulations can simulate deformable and break-
able objects and fluids; hence, they can handle a wide range
of simulation cases. Mass-spring systems and finite element
method (FEM) are the main approaches for solid body simula-
tions, while finite volume method (FVM) and finite difference
method (FDM) are the main approaches for simulating flu-
ids [30]. In CPSs, specifically self-driving cars, mass-spring
systems and FEM are the most suited soft-body simulation
approaches since they target solid objects. They approximate
solid objects as sets of atomic elements that react to forces
and interact with each other. Therefore, soft-body simulations
follow a bottom-up approach: they model the behavior of
the atomic elements that compose each body and the high-
level behavior of that body emerges from the atomic element
interactions. Mass-spring systems model bodies as structures
composed of nodes (i.e., points with mass) connected by
beams (i.e., elastic elements); they simulate body deformations
and fractures by controlling the beam’s characteristic attributes
such as spring, damping as well as deformation and strength
thresholds. FEM, instead, simulates bodies’ elastic properties
by solving the partial differential equations that define the
stress and strain acting upon discrete hexahedral or tetrahedral
elements that compose the bodies. FEM is more accurate than
mass-spring systems but has a higher computational demand
due to its complexity [30]. Consequently, the achievable sim-
ulation efficiency of FEM is usually significantly lower than
mass-spring systems, strongly limiting FEM’s applicability for
real-time simulations.

Both rigid- and soft-body simulations can be effectively
combined with powerful rendering engines to implement
photo-realistic simulations [5], [7], [11], [41]. However, soft-
body simulations can simulate a wider variety of physical
phenomena compared to rigid-body simulations. For example,
soft-body simulations can model body deformations, fracture,
vibrations, anisotropic mass distributions, and inertia, essen-

tial in many CPSs scenarios. Soft-body simulations are also
very versatile. As stated by Dalboni and Soldati, “using the
elementary description of target systems as collections of
nodes and beams, it is possible to contemplate all the laws of
mechanics that rule the physical world” [10]. Consequently,
soft-body simulations can easily simulate different materials
and other phenomena, such as aerodynamics and pressured
volume changes relevant in many CPSs domains. For example,
to simulate how changes in the tires’ pressure impact vehicles’
response to driving commands, soft-body simulators “simply”
deflate the tires (i.e., they do not change how they simulate
physics nor implement any heuristic to handle this specific
case). To illustrate this point, we report in Figure 2 the results
of one experiment that we ran using BeamNG.tech. For this
experiment, we created a straight road segment (blue in the
figure). Next, we programmed a vehicle to drive on it without
flat tires (in green). Finally, we repeated the same experiment
but deflated a different tire each time (red and yellow). In
Figure 2, we show the position and direction of the vehicle
during the simulations. As shown in the figure, the vehicle
keeps to the road when no tires are flat, but its trajectory
drastically changes as soon as one of its tires is flat. Noticeably,
the trajectory consistently changes depending on which tire
(i.e., front or rear, left or right) is flat. In contrast, to implement
these scenarios, rigid-body simulations would need to adapt
the wheel model and the friction coefficient to “brute-force”
replicate the effects of the deflated tires.

Soft-body simulators require more complex models than
rigid-body simulators. Those models are not trivial to cre-
ate [10] and impose higher computational demand, but enable
soft-body simulators to achieve higher simulation accuracy.
Therefore, rigid-body simulations are standard tools for sim-
ulating complicated traffic scenarios where simulated entities’
movement is mostly unrestricted (e.g., trajectory planning). In
contrast, soft-body simulations are a better fit for implementing
safety-critical scenarios (e.g., car crashes [13]) and focused
scenarios in which high simulation accuracy, even in extreme
situations, matters the most.

III. BEAMNG.TECH IN A NUTSHELL

BeamNG.tech is a framework specializing in autonomous
driving and driver’s training. It has been recently released
under a mix of commercial and open-source licenses by
BeamNG GmbH.3 The framework features a powerful soft-

3BeamNG.tech is available at https://beamng.gmbh/research/ and is free for
non-commercial use.
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Fig. 3. Overview of BeamNG.tech

body simulator, several editors (e.g., road editors, track genera-
tor, world editor), and an extensive API that enables procedural
content generation, automatic collection of simulation data
for training and validation, and control of simulated vehicles
using external programs (e.g., driving AIs). Additionally, since
BeamNG.tech is derived from a video-game developed by the
same company, the framework (i) comes with an unmatched
set of assets, including more than twenty vehicles, seven
trailers, hundreds of obstacles, elements of scenery and types
of vegetation, and seventeen detailed maps scoring forty-four
square kilometers of urban and suburban environments; (ii) it
is well maintained and meets stringent requirements on real-
time execution and visual realism; (iii) the majority of its
components are open-source4 and extensible; and, (iv) it has
a large user base that continuously provides fresh and diverse
content, extensions, mods, and add-ons.

In this section, we briefly describe BeamNG.tech’s software
architecture and main components (Section III-A), its approach
to soft-body simulation (Section III-C), and how part of its
APIs (i.e., BeamNGpy) can be used to procedurally generate
environments and test scenarios (Section III-D).

A. BeamNG.tech’s Architecture

BeamNG.tech is organized around a central game engine
that communicates with the physics simulation, the UI, and the
BeamNGpy API5 as exemplified by Figure 3. CPS’ developers
and testers can use BeamNG.tech via its UI or API. The UI can
be used for game control, and its diverse editors enable assets
and content creation (e.g., gameplay, scenarios). For example,
developers can use the world editor to create or modify the
virtual environments that are used in the simulations, while
testers can create test scripts (gameplay in the figure) to setup

4The Lua code is open-source under the CDDL or MIT licenses but the
C++ core simulator is not.

5BeamNGpy is available as a package from PyPI, the Python Package
Index, while its source code is available at https://github.com/BeamNG/
BeamNGpy

dynamic scenarios. The API, instead, allows the automated
generation and execution of test scenarios, the collection of
simulation data for training as well as testing and validating
CPSs (e.g., camera images, LIDAR point clouds, g-forces),
and the possibility to interact with the running simulation
(e.g., drive vehicles, move objects around). The game en-
gine manages the simulation setup, camera, graphics, sounds,
gameplay, and overall resource management. The physics core
handles resource-intensive tasks such as collision detection,
basic physics simulation and orchestrates the multi-threaded
execution of the vehicle simulators (see Section III-C). The
vehicle simulators —one for each of the simulated vehicles—
simulate the high-level driving functions and the various
vehicle sub-systems (e.g., drivetrain, ABS, ESC, Turbo).

B. BeamNG.tech’s Code Base

BeamNG.tech is implemented using various technologies
but primarily consists of C++ and Lua code. The framework
code base contains more than 350k lines of C++ code and
more than 200K lines of Lua code (without considering third-
party libraries). The physics simulation alone accounts for
some 10k lines of C++ code.

C. BeamNG.tech’s Soft-body Simulation

This section describes how BeamNG.tech implements the
physics simulation.

The Core Physics Model. At its very core, BeamNG.tech
implements the fundamental spring-mass model (see Sec-
tion II). In its basic form, this model consists of nodes with
mass connected by weightless elastic elements, called beams.
Beams implement a parallel mass-spring-damper circuit and
obey Hooke’s law extended with damping:

Fs = −kx− cẋ (1)

According to this law, the force Fs necessary to extend or
compress a spring by some distance x is proportional to that
distance by a positive factor k that characterizes the spring’s
stiffness. Damping, instead, is a force that opposes the spring’s
motion and is proportional to the spring’ velocity (ẋ) by a
positive factor c that characterizes the spring’s internal friction.
Therefore, the mass-spring model can simulate how forces
applied to the nodes propagate through the beams causing
them to expand, compress, deform, or even break.

Nodes are dimensionless mass-points that occupy a position
in space and are affected by the sum of forces propagated by
the elastic elements that connect them. Since BeamNG.tech
does not model nodes’ rotation, nodes do not sum any momen-
tum; hence, they act as hinges free in all axes. Nevertheless,
nodes have frictional properties and collide against other sim-
ulated entities. Nodes can be organized along one dimension
to form chains, two dimensions to form polygonal meshes
modeling the edges of objects’ surfaces, or three dimensions
to form complex networks modeling the internal structure of
bodies [10]. Figure 4 (left panel) exemplifies how the body
of a vehicle is modeled as a three-dimensional network in
BeamNG.tech.



Fig. 4. An example of how BeamNG.tech models the internal (left panel) and the external (right panel) structure of vehicles. The internal structure is modeled
as a three-dimensional network of nodes and beams, while the external structure consists of triangles.

Beams and triangles connect nodes. Beams enable the
simulation of bodies’ deformation, while triangles enable the
simulation of aerodynamic’ drag, lift and the simulation of
enclosed pressured surfaces. Additionally, triangles enable
detecting collisions and computing collision response. Fig-
ure 4 (right panel) highlights how the triangles contribute
to the vehicle’s body modeling in BeamNG.tech. To help
developers build accurate models that involve linear and non-
linear behaviors typical of real-life components, BeamNG.tech
defines various types of beams. Noticeably, this is one of the
most distinctive novelties of the framework. Basic beams have
constant spring and damping rates, hence implement the linear
behavior of Hooke’s law (see Equation 1). They can stretch,
shrink, break, or permanently deform and can be used to model
various materials by adjusting their deformation and break
thresholds. Bounded beams, instead, have different spring and
damp rates depending on how fast —not how much— they
are compressed or expanded. They simulate materials with
non-linear properties, like real-life car suspension’s spring and
dampers, and might have a defined length to limit suspension’s
travel. Anisotropic beams implement different behaviors dur-
ing compression and expansion [16]. They can be used to
model structures that are easy to compress but very hard to
expand, such as a tire’s sidewall, and “supporting” structures
that resist compression but are free to expand. Finally, L-beams
and torsion bars model angular springs and can be used to
simulate the leaf springs in real-life suspension systems.

The Vehicle Models. The diversified types of
BeamNG.tech’s beams allow developers to accurately
model complex systems, such as complete vehicles. To
facilitate reusability and maintainability, BeamNG.tech
models vehicles as ensembles of individual components
that correspond to real-life vehicle’s part (see Figure 5).
Not all the components are modeled at the same level of
detail. Some components, such as wheels and suspensions,
are modeled as beams and nodes to accurately simulate
their physics. Other components, instead, are modeled only
in abstract form; for instance, this is the case of vehicles’
engine. Figure 5 illustrates the main components that form
a BeamNG.tech car’s body (left panel) and how wheels and
suspensions are composed of nodes and beams (right panel).

The vehicle models encode the rules that specify how parts
are constructed, how they fit together, and how they interact
with each other. For example, vehicle models specify how the
tires are constructed using nodes and beams and how wheels
are attached to the wheel’ hubs. Similarly, they describe how
the hubs are attached to the suspensions and the chassis’
suspensions. The vehicle models also describe how torque
propagates from the engine through the car’s powertrain
(e.g., gearbox, differential, axles) to the wheels. The vehicle
models are comprehensive and make BeamNG.tech extremely
versatile as they allow to model structurally different vehicles
in various configurations by directly picking the right parts
to assemble them, as it happens in reality. For instance,
according to these models, motorcycles, cars, and trucks need
an engine, but trailers do not; motorcycles have two wheels,
cars have four, while trucks have more. These models also
contain all the necessary logic to simulate headlights, sounds,
materials, and the various driving-assistance systems (e.g.,
ABS, ESC) that contribute to the final driving simulation and
data for realistically render the vehicles.

Simulation execution model. BeamNG.tech implements
a two-layered simulation: at high-level, it simulates compo-
nents that generate forces (e.g., vehicles engines, external
controllers) without representing them explicitly as beams
and nodes; at low-level, it simulates how the forces propa-
gate across soft-bodies composed of nodes and beams. The
simulation execution follows the actor model [20]: differ-
ent vehicles are independent and concurrently executed, and
they communicate by passing messages using event queues.
Consequently, all the interactions between them happen asyn-
chronously, enabling BeamNG.tech to parallelize the physics
simulation’s execution, the game logic, and the vehicle models
on multiple threads, and simulating the force propagation
across a large number of elements efficiently. On top of this
layered, “distributed“ execution model, BeamNG.tech can run
simulations faster than real-time using gaming setups as well
as commodity PCs. Specifically, on the reference benchmark 6

BeamNG.tech runs the simulations up to five times faster than
real-time for one simulated vehicle. We report the results of

6The reference benchmark is available along with the BeamNG.tech’s
distribution.



Fig. 5. An example of a BeamNG.tech’s vehicle model. The vehicle is composed of different parts that are assembled to resemble real-life settings. The 3d
graphic meshes of these parts are presented in (left panel). The vehicle physics design contains 714 nodes that are connected by 4479 beams of various types
and 976 triangles. The rear suspension part is presented in (right panel).

TABLE I
RESULTS OF BEAMNG.TECH’S REFERENCE BENCHMARK IN WHICH AN

INCREASINGLY LARGE NUMBER OF VEHICLES IS CONCURRENTLY
SIMULATED.

# Cars MBeams / sec Real-time speed up

1 46.723 513%
2 87.503 480%
3 114.311 418%
4 139.884 384%

We ran the benchmark using a non-dedicated machine with 16 GB of
memory, and an i7 CPU with 4 physical and 4 virtual cores, running at
3.10GHz.

the reference benchmark in Table I.
Low-level and high-level simulations are tightly coupled:

the components continuously communicate with each other
and propagate the forces or torques to the nearby components.
Force propagation is bi-directional and happens across both
the simulation layers. For example, the low-level physics core
calculates the forces acting on a wheel’s hub and tire nodes.
Next, it passes the angular velocity of the wheel’s hub to
the high-level drivetrain. Then, the drivetrain propagates the
wheel’s angular velocity up to the engine that computes the
torque. Finally, the engine propagates the torque back to the
wheels via the drivetrain, and the physics core applies the
torque to the wheel’s hub nodes causing the beams that connect
it to the tire’s nodes to pull them, effectively making the tires
move. Similarly, acting on the high-level steering wheel causes
a force that propagates through the steering rack and eventually
makes the wheels turn.

Noticeably, when developers use real steering wheels to
drive the simulated vehicles, the simulated wheels’ reaction

forces are fed back to the steering wheel and realize the so-
called force feedback. Since the simulation continuously prop-
agates forces back and forth across connected components,
BeamNG.tech ensures the simulation’s stability by running
the simulation loop at a very high-frequency (up to 2KHz).
Additionally, because BeamNG.tech simulates physics at high-
frequency, it can model subtle effects, such as the high-
frequency micro-vibrations that happen to the wheels as the
tires approach their grip limits, which are notoriously hard to
simulate accurately.

BeamNG.tech builds on top of the mass-spring approach
to soft-body simulation but extends it in many ways to
accurately simulate the physics, pressure, aerodynamics, and
collisions of entire vehicles (see Figure 6). Additionally, the
use of comprehensive vehicle models and massively parallel
simulation execution enable faster than real-time execution of
a large variety of vehicles (see Table I).

D. Procedural Content Generation with BeamNGpy

As with many other simulations, BeamNG.tech allows
users to manually provide additional content to the platform
like three-dimensional models, material definitions, and maps.
However, differently than most of the state-of-art simulations,
it comes with a set of editors that allow the modification or
creation of environmental assets directly inside the platform. It
also provides an API that automates scenarios generation, test
execution, and data collection and allows external programs to
control the simulation. A fundamental requirement for testing
driving AIs and implementing test oracles.

BeamNGpy organizes simulations around the concept of
scenarios, driving tasks that the car under tests, (i.e., the
ego-car) must solve; a common scenario is to drive from



Fig. 6. Simulation of the physics, pressure, aerodynamics, and collision of a vehicle in BeamNG.tech

a starting location to a target area without driving off-road
nor crashing [28]. Scenarios take place in environments that
are defined by a terrain, environmental parameters such as
time of day, and contain roads and static objects (e.g., props,
obstacles). BeamNGpy allows controlling environmental con-
ditions and lighting, the generation of roads, lane markings,
curbs, and props’ placement and sizing. Like parked cars and
traffic signs, complex static objects require the availability of
three-dimensional mesh models that define their geometries.
Instead, simple objects, like cones and cubes, are procedurally
generated.

Scenarios involve at least one ego-car equipped with sen-
sors, like cameras and lidars, and controlled by the driving
agent under test. Scenarios might include additional vehicles
that can be programmed using BeamNGpy. Those non-ego
cars implement regular traffic, adversarial scenarios (e.g., cut-
in-lane), or critical situations (e.g., car crashes). As for the
ego-car, various sensors can be attached to non-ego vehicles
to monitor their status. Thanks to those sensors, BeamNG.tech
fulfills the fundamental “observability” requirement of testing,
allows the definition of test oracles, and can quickly collect
large datasets for training and validation.

IV. BEAMNG.TECH USAGE IN RESEARCH, INDUSTRY &
EDUCATION

BeamNG.tech in autonomous systems research. Au-
tonomous driving is expected to improve transportation safety
drastically. However, recently reported fatal crashes involving
self-driving cars are signaling that, at least in the short-term,
these expectations appear to be too optimistic. This situation
calls for further research in the field to avoid releasing self-
driving cars equipped with defective software, which might
become erratic and possibly life-threatening. Given the danger
and ineffectiveness of physical testing [25], researchers and
practitioners devised simulation-based testing approaches for
CPSs, which provides the opportunity to generate test sce-
narios automatically. Additionally, in simulations, the systems
under test can face scenarios that might be otherwise too
hard, too risky, or impossible to recreate in real life. However,
automatic test generation comes with several open challenges
of what constitutes useful tests and how to systematically
generate them. The approaches reported in this section lever-

age BeamNG.tech to address those challenges. To the best
of our knowledge, a comprehensive list of approaches include
AsFault [14], [15], AC3R [12], [13], [21], and DeepJanus [33].

Testing CPSs with search-based procedural content gener-
ation. Testing a CPS requires the generation of test scenarios
that effectively stress the system under tests. To systemati-
cally find critical test scenarios or test scenarios particularly
challenging for the system under test, Gambi, Mueller, and
Fraser combined search-based software testing and procedural
content generation into a novel approach called AsFault.
AsFault generates road models that stress self-driving cars’
lane-keeping and leverages BeamNG.tech to implement them
in automatically executed soft-body simulations. AsFault uses
a genetic algorithm to mutate and recombine the road models
and create increasingly challenging test scenarios that eventu-
ally cause the ego-car to drive off-road.

Generating critical test cases from police reports. Search-
based test generation is a valid alternative to traditional
scenario-based testing. It can generate challenging test sce-
narios that expose safety-critical issues in CPSs. However, it
struggles to generate test scenarios with peculiar features, e.g.,
a rear-end car crash, that developers might need to validate or
debug their implementations. Manually creating such test sce-
narios is time-consuming and cumbersome, so an automated
solution is needed. To address this problem, Gambi, Huynh,
and Fraser devised AC3R, an approach to derive scenario-
based tests from simulations of real car crashes. AC3R lever-
ages natural language processing and a custom ontology to ex-
tract information from police reports that describe car crashes.
Next, it uses basic kinematics to plan the intercepting vehicles’
trajectories. Finally, it uses BeamNG.tech to automatically
simulate the environments, roads, and vehicles’ trajectories
that re-enact the car crashes. A large user study confirmed that
the simulations generated by AC3R using BeamNG.tech accu-
rately match the police reports’ descriptions. Furthermore, an
empirical evaluation using a vision-based driving AI showed
the effectiveness of critical driving scenarios as test cases.

Automatically exploring Deep Learning systems’ behavior
frontier. Deep Learning (DL) systems learn from data, and
traditional approaches to software quality cannot assess their
reliability and generalization capabilities. Analyzing the be-
havior frontier is a viable solution to characterize DL systems



TABLE II
MAIN MODEL-BASED SIMULATIONS USED IN CPS RESEARCH AND THEIR MOST DISTINGUISHING FEATURES.

Simulator Domain Approach Vehicles Pedestrians Environment Deployment

AirSim autonomous driving rigid-body cars no weather multi-OS
drones drones lighting docker

Carla autonomous driving rigid-body cars yes weather multi-OS
lighting docker

BeamNG.tech driving soft-body cars/trucks no weather windowstrailers/drones lighting

Gazebo robotics rigid-body cars no N.A. multi-OS
drones docker

Udacity AV autonomous driving rigid-body car no N.A. multi-OS
docker

Baidu Apollo autonomous driving rigid-body cars yes weather multi-OS
lighting docker

by quantifying how much valid inputs can be modified before
these systems misclassify them. Finding DL systems’ behavior
frontier is not easy. It requires identifying the boundary
of the parameter space where the DL systems behave as
expected and outside of which start to diverge. To address
this problem, Riccio and Tonella proposed a model-based
approach, DeepJanus, that identifies pairs of similar inputs
that trigger different behaviors of the DL systems under test.
Riccio and Tonella successfully applied DeepJanus to explore
the behavior frontiers of a digit classifier trained on the MNIST
dataset [27] and the NVidia’s Dave2 [6] end-to-end steering
controller. For exploring the steering controller’s behavior
frontier, DeepJanus relies on BeamNG.tech to procedurally
generate the pairs of similar roads for which the steering
controller keeps the car on the road and drives off the road.

BeamNG.tech in industrial projects and education.
BeamNG.tech is a simulation framework for autonomous
driving applications and driver training. It supports testing,
data generation, and driving simulations all the way to research
and commercial deployment. As a result of that, BeamNG
GmbH has participated in various research projects and in-
dustrial collaborations, involving major players in the CPSs
domain, such as Audi Electronics Venture GmbH and the
German Research Center for Artificial Intelligence (DFKI).
BeamNG.tech is also an emerging reality in education.7 It is
currently used as a learning tool at the University of Passau
(Germany) and at the University of Zurich (Switzerland).

In summary, BeamNG.tech has already shown promising
results from research and industrial enablers and as a tool for
education, supporting our expectations that soft-body simula-
tion will continue to be considered in future research initiatives
in CPSs domains. In Section VI, we summarize the path to
the future of soft-body simulation and BeamNG.tech in CPSs
development and evolution.

7BeamNG.tech has been used in seminars, several students’ projects, and
theses. An incomplete list of submitted theses using BeamNG.tech is available
at https://staff.fim.uni-passau.de/∼gambi/#submitted-theses

V. RELATED WORK

In recent years we observed a growing number of CPS
simulation environments for research and industry. These
environments allow to perform model-based [24] and data-
driven [4] simulations, and to pair them as co-simulations [31].
In this paper, we mainly discuss model-based simulations.
Specifically, we consider model-based simulators that are
released under a non-commercial license, hence promoting
open research.

Model-based simulations rely on abstractions (i.e., the
models) to simulate only the physical phenomenons that are
relevant for their intended application (e.g., physics of solid
objects for simulating vehicles). To our knowledge, the form
of model-based simulation most widely adopted in industry
and academia is rigid-body simulation (see Table II). In Table
II, we list model-based simulators commonly used in academia
and industry along with their most distinguishing features.
This list does not aim to be exhaustive and contains the
following model-based simulators: AirSim [7], Carla [11],
BeamNG.tech [5], Gazebo [43], Udacity AV Simulator [35],
and Baidu Apollo [41]. As it is possible to observe from
Table II, most simulators target the autonomous driving do-
main. The only exceptions are AirSim, which includes drones,
and Gazebo, traditionally used in Robotics. Additionally,
BeamNG.tech targets the general domain of driving since it
has been used to research autonomous and manual driving.
All the simulators, but BeamNG.tech, implement rigid-body
simulation, can be installed in multiple environments (e.g.,
Windows, Linux, Mac), and provide a dockerized version for
quick use. In contrast, BeamNG.tech implements soft-body
simulation and can be used only in Windows-based environ-
ments.8 All the simulators come with at least one car model
and allow for using custom vehicles. AirSim, Gazebo, and
BeamNG.tech provide drone models, but only BeamNG.tech
also includes trucks, trailers, and other vehicle models. The
simulation of pedestrians is not yet widely supported. In
contrast, the simulation of environmental conditions, such as

8A release of BeamNG.tech for Linux is under development.



weather and time-of-day (lighting in the table), is available in
most simulators. All the simulators also provide an API that
enables external programs to interact with the running simula-
tions (e.g., controlling vehicles). However, only BeamNG.tech
enables the procedural generation of test scenarios and creating
assets and contents via editors.

VI. THE PATH FORWARD

We reflected on the advantages and disadvantages of soft-
body and rigid-body simulations toward developing and testing
CPSs. We discussed using soft-body simulations as a necessary
complement to mainstream rigid-body simulations for simu-
lating focused and safety-critical test scenarios. In addition to
simulation aspects, we considered the procedural generation
of virtual environments and test scenarios. We concluded that
automation in simulation frameworks is vital to improving
current CPS development and testing practices. We identified
some aspects that require enhancements for realizing the vision
of maintainable, evolvable, and reliable CPSs. We discuss
below some critical innovations to achieve this vision:

• DevOps testing pipelines for CPS: minimizing the
number of post-release failures experienced by CPSs
requires understanding, modeling, and monitoring the
specific failures occurring in them. The challenge of
this activity concerns the definition of tools that allow
identifying CPS behaviors in real-world scenarios. Thus,
a related challenge to this problem is mitigating the risks
of experiencing unexpected CPSs’ behaviors in complex
and dynamic environments. Our investigation highlighted
the need to design DevOps testing pipelines that combine
different simulation approaches (e.g., rigid- and soft-
body) and support the whole development in an agile
fashion.

• Modularity & Serviceability: novel strategies are
needed to facilitate the adoption of continuous integra-
tion, testing, and deployment. Likewise, modularity and
serviceability require better support during development
and maintenance [23]. In the CPS domain, modularity
refers to decoupling the (hardware/software) components
and identifying small CPS units of functionality that
can be developed, maintained, and tested in isolation.
We observed how soft-body simulations could assess the
behavior of those CPS units more realistically.

• Test generation and procedural content generation:
research in Cyber-physical Systems already addressed
automated test execution and reporting [1]; however,
practitioners in the field also require means for automated
verification and validation (V&V) [19], [22]. Novel V&V
solutions must handle open challenges such as the auto-
mated generation of test scenarios for CPSs and their
optimization [18], non-deterministic behaviors in CPSs
and their environments, and humans-in-the-loop [23],
[32], [37]. We argue that ensuring the reliability and
safety of CPSs requires tailoring test generation around
specific CPS domains. This way, the generated tests can

meet complementary and necessary testing criteria (e.g.,
fault detection, code coverage, execution costs) [18].

• Multi-domain support: the research and industrial com-
munities have produced simulation environments that
could serve the purpose of testing CPSs. However, such
environments (as discussed in Section II and Section V)
come with severe limitations. One critical aspect concerns
the need for those simulation environments to support ap-
plication domains other than automated driving. Drones,
mobile work machines, and, more in general, robotics
systems are increasingly becoming relevant. Hence, re-
search in those fields deserves the right support from
state-of-art rigid-body and soft-body simulators.

• Scenarios concerning users’ needs: research in au-
tonomous driving systems has discussed the need to
include user-relevant criteria in current simulations other
than safety.9 For instance, motion sickness, a phenomenon
that frequently occurs in vehicles’ passengers —not
drivers— might become a show stopper for the accep-
tance of self-driving cars. Consequently, to avoid or
reduce the effect of motion sickness on passengers, self-
driving cars’ design must also consider their comfort.
Motion sickness is caused by sudden later and vertical
forces acting on the passengers; it also depends on where
and how the passengers sit inside the vehicles. So, dealing
with it requires very accurate simulations (i.e., soft-body
simulations) to study how self-driving car driving styles
affect passengers’ comfort.
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