
Davide Serpi – Stefano Cimmino PSD 2025

ROS-Based Autonomous Driving

Simulation with BeamNG.tech:

From Setup to Control Algorithms

Developed for PSD 2025 & Robot's Mechanics

Professor: Marco Gabiccini

Students: Davide Serpi, Stefano Cimmino

Davide Serpi – Stefano Cimmino PSD 2025

Citations and Acknowledgements

• S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W. Woodall, “Robot Operating System 2:

Design, architecture, and uses in the wild,” Science Robotics vol. 7, May 2022.

• Pascale Maul, Marc Mueller, Fabian Enkler, Eva Pigova, Thomas Fischer, Lefteris

Stamatogiannakis, "BeamNG.tech Technical Paper"

• Thanks to all the BeamNG.tech Team for the help with the forum's topics

• Racerguy24, "RG R/C Pack" mod that helped for the structure

Davide Serpi – Stefano Cimmino PSD 2025

Index

• Introduction

• BeamNG.tech Installation and Vehicle Files Setup

• BeamNG-ROS2 Bridge

• Track Building, Scenario and Sensors

• Implementation of Vehicle Control through BeamNG-ROS2 Integration

• Understanding BeamNG: Simulator Mechanics & Vehicle Modeling

Davide Serpi – Stefano Cimmino PSD 2025

Introduction

Objectives, Tools Overview and Requirements

Objectives

The goal of this guide is to set up a simulation environment for testing autonomous driving

algorithms. We will use the BeamNG.tech simulator integrated with ROS 2 for sensor data

acquisition and vehicle control. This setup allows for flexible scenario design, giving users

full control over its elements and customization.

Algorithms can be developed in Python using ROS 2 nodes, without requiring a virtual

machine.

The provided vehicle is ready to use immediately after installation. It is a 1:1 scale

reproduction of the real vehicle used in the PSD project, specifically created in BeamNG.tech

to ensure realistic and reliable testing.

Davide Serpi – Stefano Cimmino PSD 2025

Softwares and Libraries Used

Davide Serpi – Stefano Cimmino PSD 2025

• BeamNG.tech Environment 0.34.2

• Blender 3D modeling 4.2.2

• WSL 2 for Ubuntu Linux kernel

• Ubuntu for ROS 2 installation 22.04

• PyCharm Python IDE and terminals usage 2024.2.3

• Visual Studio Code IDE for code editing 1.92

• ROS 2 Humble Hawksbill for running the bridge with BeamNG.tech

• Python for scripting and algorithm development 3.10

• BeamNGpy Python API for BeamNG.tech 1.31

Requirements
Operating Systems:

• Windows 10/11 (for BeamNG.tech and development tools)

• Ubuntu 22.04 (via WSL 2 for ROS 2 environment)

CPU: Quad-core processor (Intel i5/i7 or AMD Ryzen 5/7 recommended)

RAM: 16 GB (for smoother simulation and parallel processes)

Storage: SSD with 70 GB of free disk space

Graphics Card: NVIDIA or AMD dedicated GPU with at least 2GB VRAM (tested with NVIDIA

GeForce GTX 1650)

Other requirements: Basic programming skills in Python, familiarity with ROS 2, basic

knowledge of installing software on Windows and using Linux bash commands, familiarity with

videogame car simulators.

Davide Serpi – Stefano Cimmino PSD 2025

Davide Serpi – Stefano Cimmino PSD 2025

What is BeamNG.tech?

BeamNG.drive is a highly realistic driving

simulator known for its advanced soft-body physics

and detailed vehicle dynamics.

BeamNG.tech is its R&D-focused version, offering

tools for AI testing, autonomous driving, and

physics simulations.

BeamNG's physics engine is based on a node and

beam structure:

• Nodes are mass points that form the vehicle’s

frame and components.

• Beams are elastic connections between nodes,

acting like springs and dampers.

Davide Serpi – Stefano Cimmino PSD 2025

BeamNG is designed to facilitate modding,

allowing users to create and customize a wide

range of content. The game supports

modifications for:

• Vehicles

• Maps

• Scenarios

For this project, we will develop a vehicle mod

and a scenario mod. Additionally, we will modify

an existing map mod to integrate our

customized track.

Modding on BeamNG.tech

Davide Serpi – Stefano Cimmino PSD 2025

What is BeamNGpy?

BeamNGpy is a Python library that allows interaction with

BeamNG.tech and it enables vehicle control, real-time

telemetry data retrieval and game environment modifications.

BeamNGpy

We will use BeamNGpy to communicate with the game and for

sending command messages in the example Python script.

The following chapters describe how to install the library in a

Python environment and how to use it. If you are using

PyCharm as your Python IDE, you can install the library

directly from the Python package manager. However, we

recommend following the instructions provided later for a

more complete setup.

Davide Serpi – Stefano Cimmino PSD 2025

Overview of the Setup Process

Before proceeding with the setup guide, here is an overview of the steps we will follow in

the next chapters to set up the vehicle and environment:

➢ Installing BeamNG.tech

➢ Launching the game

➢ Installing the vehicle

➢ Setting up the ROS2 workspace

➢ Setting up the ROS2 bridge

➢ Starting a scenario with the ROS2 bridge

➢ Creating a level

➢ Creating a track (optional)

➢ Creating a scenario

➢ Creating a ROS2 publisher node

➢ Developing an algorithm for vehicle control

These steps will guide you through setting up a functional simulation environment.

Davide Serpi – Stefano Cimmino PSD 2025

BeamNG.tech Installation and

Vehicle Files Setup

How to download and setup BeamNG.tech and the vehicle

Davide Serpi – Stefano Cimmino PSD 2025

Chapter index

• how to install BeamNG.tech

• how to lunch the simulator

• how to install the vehicle

• test the vehicle

Davide Serpi – Stefano Cimmino PSD 2025

How to install BeamNG.tech

You can install BeamNG.tech after your license request has been accepted by the

BeamNG team. You can compile and submit your request here:

BeamNG.tech request

You will typically receive a response via email within a few hours. They will inquire about

your intended use of BeamNG.tech and will request a brief introduction about yourself.

Academic requests for study and research purposes are highly likely to be approved.

You will receive an email containing a link to download the BeamNG.tech zip file and the

key to be placed in the game's folder, along with all relevant information regarding the

license.

Davide Serpi – Stefano Cimmino PSD 2025

How to install BeamNG.tech

After that, you can download the zip file from the

provided link and extract the folder on the Desktop

or any preferred location, as long as it's a Windows

folder.

This guide was created using version 0.34. If you

plan to use a more recent version, please check for

compatibility, as this was the latest version available

at the time of writing.

Remember that after extracting the folder, you must

place the key file inside the game's directory. If a key

file already exists, simply replace it with the new one.

After these steps, everything is ready to launch the

game.

Davide Serpi – Stefano Cimmino PSD 2025

You can either launch the executable BeamNG.tech.x64.exe in the Bin64 folder

located in the main folder of the game or launch it through PowerShell in

administrator mode and open the console for debugging and visualizing warnings

and errors:

If everything has been set up correctly, when you launch the game, you will see the

text "BeamNG.tech."

E:\PSD\BeamNG.tech.v0.34.2.0\Bin64\BeamNG.tech.x64.exe -console -nosteam

How to launch the simulator

Davide Serpi – Stefano Cimmino PSD 2025

How to install the vehicle

You can find the vehicle's mod in the BeamNG.tech PSD 2023/2024 drive:

It is necessary to create several folders: within the game's directory, create a folder

named “mods”, and inside it, create a subfolder called “unpacked”. Then, extract the

mods into this folder. Afterward, delete the zip file and properly configure the folder

structure:

There aren't any zip files so be careful about this.

For any problem you can read the documentation here: Mods_documentation

Davide Serpi – Stefano Cimmino PSD 2025

Test the vehicle

After these steps you can drive and test the vehicle in game.

Lunch the game and select the garage mode, then search the vehicle into the vehicle list:

Select the package and one of vehicle

configuration.

To try the vehicle click the “Test” button

located in the bottom-left corner.

BeamNG-ROS2 Bridge

How to connect BeamNG.tech with ROS 2

Davide Serpi – Stefano Cimmino PSD 2025

Davide Serpi – Stefano Cimmino PSD 2025

Chapter index

• configuration

• WSL installation

• installing BeamNGpy

• ROS 2 Humble Hawksbill setup guide

• ROS 2 - creating a workspace

• Terminal Setup & Workflow for BeamNG-ROS2 Integration

• rqt

Configuration

Among the possible configuration alternatives, and as recommended by the developers of

BeamNG and the bridge, the following setup has been chosen.

The BeamNG.tech runs on Windows since it requires Vulkan API to leverage the dedicated

GPU.

Meanwhile, ROS 2 Humble Hawksbill runs on a Linux kernel (Ubuntu 22.04) installed via WSL

(Windows Subsystem for Linux).

Davide Serpi – Stefano Cimmino PSD 2025

WSL installation

Then open Ubuntu as administrator from the Start menu and follow the steps to create the

user.

After that we can update the packages using the command:

The requirement is to have Windows 10 version 2004 or later, or Windows 11. Open

PowerShell or Command Prompt in administrator mode and enter the command:

wsl --install

wsl --install -d Ubuntu-22.04

Since the recommended Linux distribution is Ubuntu 22.04, you can use the command:

sudo apt update && sudo apt upgrade -y

Davide Serpi – Stefano Cimmino PSD 2025

Installing BeamNGpy

Both the ROS 2 and BeamNG.tech integration and sending commands to the simulator client

require a Python library called BeamNGpy.

To install it, simply open Ubuntu from the Start menu with administrator privileges and run

the following command:

pip install beamngpy

mkdir -p ~/venv_beamngpy # choose the name you prefer
python3 -m venv ~/venv_beamngpy
source ~/venv_beamngpy/bin/activate
pip install beamngpy

This installs the library globally, and the following guide will still work. However, to avoid

potential conflicts with other installed library versions, it is recommended to create a virtual

environment, as suggested by the developers:

This commands create a new directory for the virtual environment, create the virtual

environment inside the new directory, activate the virtual environment and install

BeamNGpy inside it.

These are individual command lines;
you can enter them one by one or
copy and paste all the commands
into the terminal at once.

Davide Serpi – Stefano Cimmino PSD 2025

Installing BeamNGpy

sudo apt install python3.10-venv
python3 -m venv ~/venv_beamngpy
source ~/venv_beamngpy/bin/activate

In case of issues due to the missing ensurepip module (required for managing the installation

of pip within the virtual environment), you need to install the python3-venv package by

running the following command and then try to recreate and activate the virtual environment

again:

Every time you open a new terminal, activate the virtual environment before using

BeamNGpy:

source ~/venv_beamngpy/bin/activate

And every time you need to deactivate it, you can use the command:

deactivate

At this point, let's move on to the installation of ROS 2. You can safely install it with the virtual

environment active, but to be extra safe, we recommend temporarily deactivating it before

installing ROS 2 and reactivating it afterward.

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

The following integration guide can be fully accessed at the following link:

https://github.com/BeamNG/beamng-ros2-integration

Meanwhile, the steps to install ROS 2 Humble Hawksbill, the tested distribution for the

integration, can be found at:

https://docs.ros.org/en/humble/Installation.html

Under the “Binary packages" section in “deb packages".

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

Set locale

locale # check for UTF-8

sudo apt update && sudo apt install locales
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

locale # verify settings

In the same Ubuntu terminal opened as administrator, insert these commands:

These commands are used to set and verify the system locale, ensuring that it supports UTF-

8 encoding. This is important because some applications, including ROS 2, expect a properly

configured locale to handle text and special characters correctly.

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

Setup sources

These commands set up the ROS 2 package sources on your system, allowing you to install

ROS 2 through apt. First ensure that the Ubuntu Universe repository is enabled (which

contains community-maintained packages) because ROS 2 requires packages from this

repository.

sudo apt install software-properties-common
sudo add-apt-repository universe

sudo apt update && sudo apt install curl -y
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o
/usr/share/keyrings/ros-archive-keyring.gpg

Install curl, a tool used to download files from the internet and then download the official

ROS 2 GPG key, which is used to verify that the ROS 2 packages come from a trusted source.

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

Then add the repository to your sources list:

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo $UBUNTU_CODENAME)
main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

Davide Serpi – Stefano Cimmino PSD 2025

Setup sources

ROS 2 Humble Hawksbill setup guide

Install ROS 2 packages

Update the package lists, ensuring apt knows about the latest available versions of all

software.

sudo apt update

sudo apt upgrade

And update all installed packages to their latest versions (ROS 2 packages are built on

frequently updated Ubuntu systems. It is always recommended that you ensure your system

is up to date before installing new packages).

sudo apt install ros-humble-desktop

We have three different installation options, depending on our needs as shown in the guide.

We recommend downloading the desktop install: it has ROS 2 core components, plus RViz (a

visualization tool), demos & tutorials (useful for learning ROS 2).

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

Environment setup

After installing ROS 2, you need to set up your environment so that your system recognizes

ROS 2 commands and tools. This is done by sourcing the setup script.

Replace ".bash" with your shell if you're not using bash
Possible values are: setup.bash, setup.sh, setup.zsh

source /opt/ros/humble/setup.bash

By default, ROS 2 is installed in /opt/ros/humble/, but the system does not automatically

recognize ROS 2 commands. Sourcing the script updates the system's environment so that it

knows where ROS 2 is installed and how to use it. That’s why every time you open a new

terminal, you must manually source the setup script again.

To avoid this, you can add it to your shell's startup file:

echo "source /opt/ros/humble/setup.bash" >> ~/.bashrcsource ~/.bashrc

This automatically loads the ROS 2 environment every time a new terminal is opened.

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 Humble Hawksbill setup guide

Talker-listener example

Once ROS 2 is installed and set up (good job!), you can test it by running a simple

communication example using the publisher-subscriber model. This example consists of:

- a talker (publisher) that sends messages

- a listener (subscriber) that receives those messages

Since ROS 2 supports both C++ and Python, this test ensures that both APIs are working

correctly.

In one terminal, source the setup file and then run a C++ talker:

source /opt/ros/humble/setup.bash
ros2 run demo_nodes_py listener

source /opt/ros/humble/setup.bash
ros2 run demo_nodes_cpp talker

In another terminal source the setup file and then run a Python listener:

Press Ctrl + C to terminate
the current process.

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 – Creating a workspace

A workspace in ROS 2 is a directory that follows a specific structure to organize, build, and

manage ROS 2 packages. It typically contains:

• src/ → Stores the source code of ROS 2 packages

• build/ → Holds intermediate build files

• install/ → Contains the installed packages

• log/ → Stores logs from builds

Workspaces allow developers to compile, modify, and test ROS 2 packages in an isolated

environment. Multiple workspaces can be stacked using overlays, where a new workspace

builds on top of an existing ROS 2 installation.

By default, each package is installed separately in the install directory to keep the

workspace modular.

Understanding workspaces

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 – Creating a workspace

Install colcon

colcon is a build system used for ROS 2 that allows managing and compiling multiple

packages efficiently. To install colcon, run:

This package provides additional tools and extensions for building, testing, and packaging

ROS 2 workspaces.

sudo apt install python3-colcon-common-extensions

Create a workspace

To create a new workspace:

mkdir -p ~/ros2_ws/src
cd ~/ros2_ws

The tilde (~) symbol in a Linux terminal
represents the home directory of the current
user. In this case the last command is:
cd /home/username/ros2_ws

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 – Creating a workspace

Sourcing an underlay

Before building the workspace, you must source the ROS 2 installation. This step ensures that

the workspace has access to the necessary build dependencies for ROS 2 packages.

To source the underlay, run:

An "underlay" is an existing ROS 2 installation. Your new workspace (~/ros2_ws) will act as an

"overlay," meaning it extends the functionality of the existing ROS 2 environment.

Use an overlay if you want to modify a few packages without rebuilding everything from

scratch.

source /opt/ros/humble/setup.bash

Davide Serpi – Stefano Cimmino PSD 2025

ROS 2 – Building the workspace

Clone the BeamNG-ROS 2 repository

Move into the src directory of your ROS 2 workspace, where the source code of ROS 2

packages will be placed:

Download the BeamNG-ROS2 integration package by cloning its GitHub repository:

cd ~/ros2_ws/src

git clone https://github.com/BeamNG/beamng-ros2-integration.git

Move back to the root of the workspace (ros2_ws):

cd ~/ros2_ws

You can also use the command cd .. to
move up to the parent directory of your
current location.

Davide Serpi – Stefano Cimmino PSD 2025

Installing dependencies with rosdep

rosdep is a dependency management tool for ROS that helps install required packages and

external libraries before building a workspace.

Use rosdep to install the required dependencies automatically (comes bundled with the

distribution):

sudo apt-get install python3-rosdep
rosdep update
sudo rosdep init
rosdep install --from-paths src -y --ignore-src

rosdep install -i --from-path src --rosdistro humble -y

If you encounter any errors while running the command above, follow these steps to ensure

rosdep is properly installed and initialized:

ROS 2 – Building the workspace

These steps will install rosdep, initialize
it, update its package index, and then
attempt to install the dependencies
again. After completing these steps, try
running the original rosdep install
command again to ensure all
dependencies are correctly installed.

Davide Serpi – Stefano Cimmino PSD 2025

Optional dependencies

ROS 2 – Building the workspace

Davide Serpi – Stefano Cimmino PSD 2025

BeamNG-ROS2 will use the python-rapidjson library to support JSON files that do not

strictly follow the standard. You can install it by using the command:

pip install python-rapidjson

Compile the packages inside the workspace using:

colcon build

Alternatively, you can use:

ROS 2 – Building the workspace

Build the workspace

colcon build --symlink-install

it saves you from having to rebuild every time you tweak python scripts.

Now, the BeamNG-ROS2 integration should be successfully added to your ROS 2

workspace and ready to use!

Davide Serpi – Stefano Cimmino PSD 2025

<destination_to_BeamNG.tech>\BeamNG.tech.v0.34.2.0\Bin64\BeamNG.tech.x64.exe -console -
nosteam -tcom-listen-ip 0.0.0.0 -lua "extensions.tech_techCore.openServer(25252)"

This is an example of how to manage a BeamNG scenario using the bridge to enable

communication between the simulator and ROS 2 and the recommended workflow is to

manage multiple terminals separately, as shown.

Terminal Setup & Workflow for BeamNG-ROS2 Integration

The first terminal to open is Windows PowerShell (or Command prompt), where you need

to run the following command:

Step 1: Launch BeamNG.tech

-tcom-listen-ip 0.0.0.0 → Tells the simulator to listen for external connections on all network

interfaces. Working with the simulator on Windows and ROS on WSL, you can either set

0.0.0.0 or the WSL IP address.

-lua "extensions.tech_techCore.openServer(25252)" → Runs a Lua script to open a

communication server on port 25252, which allows external applications (such as ROS 2) to

connect and control the simulation.

Davide Serpi – Stefano Cimmino PSD 2025

source /opt/ros/humble/setup.bash
cd ~/ros2_ws
source install/local_setup.bash

Open the first Ubuntu terminal and enter the following commands:

Terminal Setup & Workflow for BeamNG-ROS2 Integration

These commands must be executed in every new Ubuntu terminal:

- source /opt/ros/humble/setup.bash → Loads the ROS 2 environment variables so that ROS

commands can be used

- cd ~/ros2_ws →Moves into the ROS 2 workspace, where the integration package is

located

- source install/local_setup.bash → Sources the colcon-built workspace, ensuring that

the installed ROS 2 packages (including beamng_ros2) are recognized

Step 2: Set Up ROS 2 Environment (Ubuntu Terminal 1)

Davide Serpi – Stefano Cimmino PSD 2025

source /opt/ros/humble/setup.bash
cd ~/ros2_ws
source install/local_setup.bash

Open a second Ubuntu terminal and enter the following:

Terminal Setup & Workflow for BeamNG-ROS2 Integration

Then, start the ROS 2 bridge with:

Step 3: Start the ROS 2 Bridge (Ubuntu Terminal 2)

ros2 run beamng_ros2 beamng_bridge

This launches the ROS 2 node that acts as a bridge between the simulator and ROS 2.

A ROS 2 node is a process that performs computations in a ROS 2 system. It can

communicate with other nodes via topics, services, or actions.

Once this node starts, it continuously listens for messages and communicates with

BeamNG.tech, so you cannot enter new commands in this terminal while it is running.

If you need to stop it, press Ctrl + C.

Davide Serpi – Stefano Cimmino PSD 2025

pip uninstall numpy
pip install numpy==<compatible_version>

In case of issues with the NumPy version required by the bridge to function properly (the

warning displayed is: "NumPy version >=1.17.3 and <1.25.0 is required for this version of

SciPy"), here are the commands to uninstall and reinstall a compatible version of NumPy.

During the project, an incompatible version of NumPy (1.26.4) was used, but the bridge still

worked.

Terminal Setup & Workflow for BeamNG-ROS2 Integration

Davide Serpi – Stefano Cimmino PSD 2025

ros2 param set /beamng_bridge host <your_windows_IP>

Since BeamNG.tech is running on Windows, and ROS 2 is running on Ubuntu, the ROS 2

bridge needs to know where to send its messages.

Return to the Ubuntu terminal 1 and set the IP address of the Windows machine running

BeamNG.tech:

Terminal Setup & Workflow for BeamNG-ROS2 Integration

Step 4: Set the Windows IP Address (Back to Ubuntu Terminal 1)

In the same terminal, you can now request BeamNG.tech to start a predefined scenario. For

example:

Open Command Prompt and insert the
command ipconfig, and copy the
address corresponding to “IPv4”

Step 5: Start a Sample Scenario (Ubuntu Terminal 1)

ros2 service call /beamng_bridge/start_scenario beamng_msgs/srv/StartScenario
"{path_to_scenario_definition: '/home/<ubuntu_username>/ros2_ws/src/beamng-ros2-
integration/beamng_ros2/config/scenarios/example_tech_ground.json'}"

Davide Serpi – Stefano Cimmino PSD 2025

In this guide, we have covered:

• How to install WSL

• How to install ROS2

• How to create a workspace

and install the necessary

dependencies

• The terminal workflow used

to test scenarios

In the next one, we will go into

the details of the scenario.

Terminal Setup & Workflow for BeamNG-ROS2 Integration

When the scenario loading is complete, it will be possible to enter commands in terminal 1

again.

Davide Serpi – Stefano Cimmino PSD 2025

rqt

rqt is a ROS 2 graphical tool that provides a visual interface for

monitoring and debugging topics, nodes, services, and

parameters in a ROS-based system.

Some of his useful plugins are:

• Node Graph: Visualizes active ROS nodes and their

connections, helping track data flow and diagnose system

interactions.

• Topic Monitor: Monitors and displays real-time information

about ROS topics, publishers, and subscribers, enabling

analysis of message flow.

• Image View: Displays image messages from ROS topics,

allowing real-time inspection of visual data from sensors like

cameras.

Davide Serpi – Stefano Cimmino PSD 2025

rqt

rqt is already included with ROS 2; to add the plugins mentioned earlier, you need to run the

following command:

After the ROS sourcing, you can open rqt using the following command:

Once you open rqt, you won't be able to use the terminal from which it was launched until you

close rqt. The terminal will remain occupied by the running instance of rqt.

If rqt experiences a visual glitch, you can return to the default visualization by closing rqt by

pressing Ctrl + C in the terminal where rqt was opened, and then run the following

command:

Davide Serpi – Stefano Cimmino PSD 2025

sudo apt install ros-humble-rqt-graph ros-humble-rqt-plot ros-humble-rqt-image-view
ros-humble-rqt-reconfigure

rm -rf ~/.config/ros.org/rqt*

rqt

rqt

After opening rqt, you can view all the available plugins by clicking on the "Plugins" button.

Davide Serpi – Stefano Cimmino PSD 2025

You can also set the view you prefer for

better visualization of the plugins.

Nodes and Topics visualization using rqt

For example, if you are running the algorithm example as shown later, and open the

introspection menu, by selecting the "Node Graph" plugin you will see something like this:

Where the ROS topic and node structure of the bridge and our algorithm are described.

Davide Serpi – Stefano Cimmino PSD 2025

Davide Serpi – Stefano Cimmino PSD 2025

Track Building, Scenario and

Sensors

Creating a track, a scenario and sensors overview

Davide Serpi – Stefano Cimmino PSD 2025

Chapter index

• what we need?

• how to install levels

• how to setup a given track

• how to create your track

• what is a scenario?

• example of scenario

• sensors

Davide Serpi – Stefano Cimmino PSD 2025

What we need?

At this point of the documentation, you have set up the BeamNG.tech environment

and the vehicle. However, three more elements are required to start the simulation of

the modded vehicle on a modded map:

• Level: The map where the scenario takes place.

• Track: The circuit used to test the vehicle's driving algorithm

• Scenario: Defines the vehicle's spawning position and sensor setup.

Before explaining how to create and configure these elements, it is essential to

understand the two primary tools used for track building and level creation:

• Track Builder: A user-friendly circuit design tool specifically designed for

creating racing tracks.

• World Editor: A comprehensive level-editing tool that allows users to modify

existing maps or create entirely new environments.

Davide Serpi – Stefano Cimmino PSD 2025

How to install levels

We can use these two tools to create the track, but before doing so, we must first

select a base level.

Levels serve as the maps where the vehicle is spawned. While there are several

vanilla levels available (vanilla refers to those already included in the game), we

need to modify the level's folder. Therefore, we will be using a modded level.

You are free to download and use any modded map you prefer, but we recommend

downloading the official mod map from the BeamNG repository:

Gridmap_v1_download

Davide Serpi – Stefano Cimmino PSD 2025

How to install levels

There are two ways to install a level in BeamNG: In-Game Installation or Manual Installation.

1. You can check in the repository in game and search the level you want to use.

2. You can download the zip file from the following link: Gridmap_v1_download. Once

downloaded, place the zip file in your mods folder/repo.

This folder is different from the one we previously created for the vehicle. It is automatically

generated by the game and can be accessed through the "Mods" menu by clicking the "Open

Mod Folder" button.

Davide Serpi – Stefano Cimmino PSD 2025

How to install levels

After the installation you can see in game the level downloaded in the "Freeroam" menu.

We suggest this map for his lightweight, there is a lot of space for working and also you

can modify everything without worry about to modifying vanilla game's files.

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

With the World Editor and Track Builder, there are virtually no limits to what players

can create, from custom racetracks to fully interactive environments.

For this example, we have created the track

shown on the left. You can download the circuit

.dae file from the PSD Drive: placefolder.dae.

The material's name of the .dae is "MaterialCircuit",
This name is very important because we only need to

setup the material for use the circuit.

The first thing to do is extract the mod's file of the level we install before and go

inside the folder to find the level's file components (you can see the art folder for

example)

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

Place the .dae file you downloaded into this folder. Once done, rezip the main folder of the

mod.

Be careful with the folder structure—ensure that it remains unchanged.

Now, launch the game and start the level from the "Freeroam" menu. The selected vehicle

does not matter at this stage.

Next, open the World Editor by pressing F11. If you press F11 + Ctrl, the Safe Mode of the

World Editor will open. To switch to the correct version, simply load the level you are working

on using the "Open Level" button.

In the World Editor, we need to complete two tasks:

• Place the circuit into the level.

• Assign materials to the circuit.

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

In the World Editor, you will find several useful tools in the "Window" menu:

• Asset Browser: Used to search for the circuit.

• Inspector: Displays information about the selected element.

• Material Editor: Used to configure materials for objects.

We will primarily use the Material Editor for

setting up the circuit's materials.

You can select an object within the level by clicking on this icon:

To explore the map freely, press Shift + C. This will allow you to

exit the car view and navigate the environment freely.

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

Open the Asset Browser tool and search the placefolder.dae file:

Click and hold the .dae file, then drag it into the level. The exact

position is not crucial, but make sure to place it in an open space!

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

You will see the circuit appear inside the level, but it may have a strange orange texture—this is

normal, as no material has been applied yet.

First, select the circuit while the Inspector tool is active and locate the collision options.

Make sure the collision settings are correctly configured to allow the vehicle to interact with

the circuit.

Next, we need to create a material for the circuit.

• Select the circuit again.

• Open the Material Editor.

• Click on "New Material".

• Create a new material with the same name as the

• circuit's material (for this circuit, it should be "MaterialCircuit").

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

• Assigning a Material (Alternative Method)

and if the "New Material" assignment does

not work, you can follow this alternative

method:

• Open the zip file of the mod and locate the

"main.materials.json" file. This file contains

the material definitions for the level.

• Open it in a JSON editor and add a new material

by inserting the necessary elements alongside

the existing materials.

• You can use the material provided on the next

page but remember to change the name if you

doesn't use the name "MaterialCircuit" for your

collada (.dae)

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track
"MaterialCircuit": {

"name": "MaterialCircuit",
"mapTo": "MaterialCircuit",

"class": "Material",
"persistentId": "77d93c213ew128f-adwa1c6e-488d-a98d-

b454b99635a2",
"Stages": [

{

"baseColorFactor": [
0.759438992,
0.596023977,
0.0895709991,
1

],
"baseColorMap": "vehicles/common/null_n.dds",
"metallicFactor": 0.101000004,
"normalMap": "vehicles/common/null_n.dds",
"pixelSpecular": true,

"roughnessFactor": 0.683000028
},
{

"baseColorFactor": null,
"metallicFactor": null,

"pixelSpecular": null,
"roughnessFactor": null

},

{
"baseColorFactor": null,
"metallicFactor": null,

"pixelSpecular": null,
"roughnessFactor": null

},
{

"baseColorFactor": null,

"metallicFactor": null,
"pixelSpecular": null,
"roughnessFactor": null

},
{

"baseColorFactor": null,
"metallicFactor": null,
"pixelSpecular": null,
"roughnessFactor": null

}

],
"alphaRef": 0,
"dynamicCubemap": true,
"materialTag0": "beamng",
"materialTag1": "vehicle",

"translucent": true,
"translucentBlendOp": "None",
"version": 1.5

}

Davide Serpi – Stefano Cimmino PSD 2025

How to setup a given track

Remember to save the material by pressing the save botton in the Material Editor and to save

the level in the upper menu. If everything has been done correctly, you should now see the

circuit with the material you created.

In the Material Editor, you can also modify the material itself by adjusting various maps or

properties, allowing for further customization of its appearance and behavior.

You can click on any map image to change the

selected map. Additionally, check the common

folder for other available maps.

With these steps, you can add everything you

need to your level not just the circuit but also other

objects like cones or obstacles, for example.

This allows you to customize the environment to fit

your simulation needs.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

These steps explain how to use a given track, but what if you need to create your own?

To build a custom track, you can use the Track Builder tool in BeamNG or Blender, a 3D

modeling environment. Blender is a powerful, free software that allows you to export custom

track models.

You can download Blender for free here: blender_download

Before using Blender, we first need to design the track using the Track Builder tool in

BeamNG:

• Open the game and go to the Freeroam menu.

• Select your level.

• In the upper menu, go to "Main Menu".

• Open the "Track Builder" tool.

This tool will allow you to create the initial design

of your track before refining it further in Blender.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

The game will ask to you where you want to open the truck builder, start the track builder in

the current level.

In the track builder menu you can find a lot of helpful tools for your track creation:

This will open the Track Builder menu, where

you can design your track and define its key

properties, such as banking, cornering, and

width.

At this stage, don't focus too much on the

textures, as you will define them later using

materials, as explained earlier.

If you need it, you can create even a road street

or an open track.

Davide Serpi – Stefano Cimmino PSD 2025

Track building tools

1. Track builder : Allows you to place and edit individual track segments. Segments can be

curved, straight, or custom-shaped.

2. Track Shape : Enables to modify the track structure

3. Advanced modifiers : Allows for precise control over track curvature, width and banking

4. CheckPoints : Places checkpoints along the track.

5. Obstacles : Lets you place props, barriers, and decorations around the track.

7. Walls and Ceiling : Allows to define some other track characteristics.

After creating the circuit, we can proceed to Blender. However,

before doing so, we need to convert the circuit into a .dae file.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

For doing it open, without closing the track editor, the World Editor:

On the left you will see some

elements named "procMesh...",

that's what we need for the

creation of the .dae!

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

Then, select all the elements, go to the File menu, choose "Export Selected as Collada", and

save the .dae file in your preferred location.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track
We can now move to Blender. Open Blender, create a new blank file, and delete everything in

the scene.

Next, import your Collada (.dae) file created from BeamNG.

You can do this by navigating to File > Import > Collada (.dae).

Select your Collada and in your scene you will see your track:

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

Now, in Blender, we need to complete four more steps:

1. Smoothing the Meshes

• Select the track.

• Right-click to open the context menu.

• Click "Shade Auto Smooth" to smooth the mesh of the

.dae file.

2. Creating UV Mapping

UV mapping is the process of projecting a 2D texture onto a

3D model, allowing textures to be applied correctly without

distortion. To create a UV map:
• Select the track and press "TAB" on your keyboard to

enter Edit Mode.

• Press "A" to select the entire track.

• Go to the UV menu and select "Smart UV Project" to

automatically generate the UV mapping.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

2. Creating UV Mapping

Now change from "modelling" to "UV mapping" mode

You will see something like this:

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

3. Adjusting the UV Scale

• Keep the entire circuit selected on the right side of the screen (as in the previous step).

• On the left side, in the UV Editor, press "A" to select the entire UV map.

• Press "S" to scale the UV map and make it larger.

Scale every scale to 20 or 25

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track

4. Assigning a Material

• Switch back to Object Mode by pressing "TAB" again.

• Open the Material Properties panel (found in the right-side menu).

• Click "New" to create a new material.

• Assign the material to the track by ensuring it is selected.

Once done, you can save the Blender file to make future modifications easier.

Davide Serpi – Stefano Cimmino PSD 2025

How to create your track and setup the scenario

Now, we are ready to export the .dae file from Blender using the same method we used for

importing it. Navigate to the File menu, select "Export", and save the new .dae file.

You can now follow the same steps as you did for the provided track.

These steps can be repeated multiple times, allowing your algorithms to be tested in various

scenarios with a high degree of flexibility and creativity.

Be careful about the name of the material and it's important to take the coordinates for the

spawn of your vehicle, open the World Editor again and check where you what to spawn your

vehicle:

Save this position for the

vehicle spawn position in

the scenario !!

Davide Serpi – Stefano Cimmino PSD 2025

What is a scenario?

A scenario is a pre-set challenge or mission that places the player in a specific

situation with defined objectives. Scenarios can involve tasks such as racing against

AI opponents, performing precision or completing obstacle courses.

We can use the scenario as an initializer for the simulation environment. It defines the

vehicle's initial position and orientation within the circuit while also configuring

various sensors in the scenario script (json file).

A scenario is a json file, you have to define:

• The level (the map)

• The position of the vehicle’s spawn inside the map (xyz)

• The orientation of the vehicle inside the map (quaternion)

• The vehicle you will use

• The sensors of the vehicle

You can also check the example scenario on the folder:

Davide Serpi – Stefano Cimmino PSD 2025

How to write a scenario
After you create your

scenario you can put it

inside the scenario's folder

and press on your Linux

terminal:

After that you can use it for

your project

colcon build

Davide Serpi – Stefano Cimmino PSD 2025

Example of scenario

Scenario's level

Scenario's name

Orientation

Position (from the world editor)

Vehicle selected (you can find the

model in the .pc in the vehicle folder

Scenario's type: you can create

time attack, races of task event

Davide Serpi – Stefano Cimmino PSD 2025

Example of scenario

IMU sensor

(acceleration

, angular speed)

Front, right and left ultrasonic

sensors (distance with the wall)

You can add as many sensors as you

want to the file by simply inserting

them in the code alongside the other

sensors.

You can also modify the sensor

properties, such as the Field of View

(FOV) for cameras, the direction, or

the visualization settings.

Davide Serpi – Stefano Cimmino PSD 2025

Sensors

BeamNG.tech provides a wide range of sensors, powerful tool for vehicle

simulation, autonomous driving research, and robotics applications. The

available sensors include:

• Advanced IMU (Inertial Measurement Unit) : Combines accelerometer

and gyroscope.

• Ultrasonic Sensor : Uses sound waves to measure short-range distances,

useful for obstacle detection.

• Damage Sensor : Monitors and reports structural damage sustained by

the vehicle during simulations.

• Electrics Sensor : Provides data on various vehicle electrical parameters,

such as speed, fuel level, temperature, and lighting status.

Davide Serpi – Stefano Cimmino PSD 2025

Sensors

• GForces Sensor : Measures the G-forces acting on the vehicle, helping in

vehicle dynamics analysis.

• Timer Sensor – Tracks elapsed time during a simulation.

• GPS Sensor – Provides precise geographical positioning data, essential

for navigation and SLAM algorithms.

• Lidar Sensor – Generates 3D point cloud data of the surrounding

environment, for mapping and obstacle detection.

• Radar Sensor – Detects objects and measures their relative speed, useful

for driver assistance systems.

Davide Serpi – Stefano Cimmino PSD 2025

Sensors

• Camera Sensor – Simulates the vehicle's cameras,

capturing images or videos for computer vision

applications. The camera can also determine the

distance based on pixel data.

• Powertrain Sensor – Monitors the performance of

the vehicle’s powertrain system.

• Roads Sensor – Provides information about road

characteristics, such as lane geometry and surface

conditions.

You can see it also

on the rqt plugin

"camera view"

Davide Serpi – Stefano Cimmino PSD 2025

Sensors

In the Drive folder, you will find a JSON file named "example_of_sensors",

where all sensors are defined along with their modifiable characteristics.

You can use this file as a starting point for implementing your own sensors.

Other information are present on the BeamNG documentation:

BeamNG_Sensors_Documentation

Or in the Git Hub documentation page:

ROS_Sensor_documentation

You can also check the default sensors file presents in the folder:

Davide Serpi – Stefano Cimmino PSD 2025

Implementation of Vehicle Control

through BeamNG-ROS2 Integration

Defining and running custom vehicle control scripts in the

simulation.

Davide Serpi – Stefano Cimmino PSD 2025

Chapter index

• create the script

• adding an entry point

• test script overview

• vehicle control in action

• consideration on the environment

Davide Serpi – Stefano Cimmino PSD 2025

Create the Script

For the vehicle control script, it is sufficient to create a Python script (in our case

PID_control_buggy) and place it in the following folder: ~/ros2_ws/src/beamng-ros2-

integration/beamng_ros2/beamng_ros2.

But before going into the details of the script used for our tests it is necessary to define an

entry point.

Davide Serpi – Stefano Cimmino PSD 2025

Adding an Entry Point

In ROS 2, the entry point is the executable defined in the setup.py file (for Python packages)

or in the CMakeLists.txt file (for C++ packages). It tells ROS2 which script or binary should

be executed when running the command:

ros2 run <package_name> <executable_name>

To add the entry point for the script we will use, on Windows, open the folder

~/ros2_ws/src/beamng-ros2-integration/beamng_ros2, then open the setup.py file and add the

following line in the entry_points section as shown:

entry_points={
"console_scripts": [

"beamng_bridge = beamng_ros2.beamng:main",
"example_client = beamng_ros2.examples.example_client:main",
"PID_control_buggy = beamng_ros2.PID_control_buggy:main",

],
},

Then save the file.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

This script is designed to control a vehicle using a PID controller for speed and steering

adjustments. The vehicle uses three ultrasonic sensors for distance measurement and an

IMU for detecting acceleration, to navigate along a track while maintaining a constant

speed.

The goal is to keep the vehicle at a desired speed and ensure it stays a fixed distance from

the track's walls by making continuous adjustments to the steering and throttle.

The script listens to sensor data in real-time, calculates the necessary control signals using

the PID controller, and sends those signals to the vehicle, ensuring smooth and accurate

navigation throughout the simulation.

In the following section the various parts of the test script used will be explored in greater

detail.

Davide Serpi – Stefano Cimmino PSD 2025

5m 5m

5m

Test Script Overview

Inte the picture, the ultrasonic sensors' range and desired trajectory of the vehicle are

shown.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

import sys
import rclpy
import math
import os
from rclpy.node import Node
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Range, Imu
from beamng_msgs.msg import TimeSensor, VehicleControl
import beamngpy as bngpy

NODE_NAME = "vehicle_control"
EXP_LIMIT = 500

This section imports the necessary Python libraries and modules that are used throughout

the script. It includes ROS2-specific libraries (rclpy for ROS2 node handling), geometry and

sensor messages (like Range for sensor data), and the BeamNGpy library to interface with

BeamNG.tech.

1 Importing Libraries and Setting Constants

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

class PIDController:
def __init__(self, kp, ki, kd, integral_limit=10.0):

self.kp = kp
self.ki = ki
self.kd = kd
self.prev_error = 0.0
self.integral = 0.0
self.integral_limit = integral_limit

def compute(self, error, dt):
self.integral += error * dt
self.integral = max(-self.integral_limit, min(self.integral, self.integral_limit))
derivative = (error - self.prev_error) / dt if dt > 0 else 0.0
output = self.kp * error + self.ki * self.integral + self.kd * derivative
self.prev_error = error
return output

2 PID Controller Class

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

In this section, the script defines the class that implements a PID controller and it is crucial

for controlling the vehicle's speed and steering, ensuring that it stays within the desired

parameters.

The constructor __init__ initializes the PID with kp, ki, and kd (proportional, integral and

derivative gain). An integral_limit is also set, which defines the maximum allowed value for

the integral component of the controller.

The method compute, computes the output of the PID based on the error value (the difference

between the target and the current state) and the time step dt.

The integral accumulates the error over time, while the derivative calculates the rate of change

of the error.

The output is a combination of the proportional, integral, and derivative components.

The computed output is returned, which is used to adjust either the vehicle's speed or

steering.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

class VehicleControlNode(Node):
def __init__(self):

super().__init__(NODE_NAME)

host = self.declare_parameter("host", "192.168.1.217").value
port = self.declare_parameter("port", 25252).value
vehicle_id = self.declare_parameter("vehicle_id", "ego").value

3.1 VehicleControlNode Class Initialization

This section initializes the VehicleControlNode class, which is responsible for managing the

connection between ROS 2 and BeamNG for vehicle control.

The class inherits from ROS2's Node class to function as a ROS node.

• host: declares the IP address for connecting to BeamNG, it needs your Windows IPv4

address

• port: declares the port number (default is 25252)

• vehicle_id: declares the ID of the vehicle to control in BeamNG (default is ego).

Remember to replace the
IP address with that of
the machine the simulator
is running on to make the
script work

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview
if not vehicle_id:

self.get_logger().fatal("No Vehicle ID given, shutting down node.")
sys.exit(1)

self.game_client = bngpy.BeamNGpy(host, port)
try:

self.game_client.open(listen_ip="*", launch=False, deploy=False)
self.get_logger().info("Successfully connected to BeamNG.tech.")

except TimeoutError:
self.get_logger().error("Could not establish game connection.")
sys.exit(1)

current_vehicles = self.game_client.get_current_vehicles()
if vehicle_id not in current_vehicles:

self.get_logger().fatal(f"No vehicle with id {vehicle_id} exists.")
sys.exit(1)

self.vehicle_client = current_vehicles[vehicle_id]
try:

self.vehicle_client.connect(self.game_client)
self.get_logger().info(f"Connected to vehicle {self.vehicle_client.vid}")

except TimeoutError:
self.get_logger().fatal("Could not establish vehicle connection.")
sys.exit(1)

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

The parameters declared for the host, port, and vehicle_id, are needed to connect to the

BeamNG simulation using BeamNGpy.

In this part the script checks if a valid vehicle ID is provided and attempts to establish a

connection with the BeamNG.tech simulation.

If the connection is successful, it retrieves the current vehicles and connects to the specified

vehicle, allowing control over it.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

self.create_subscription(VehicleControl, "/control", self.send_control_signal, 10)
self.create_subscription(Imu, 'vehicles/ego/sensors/imu0', self.imu_listener_callback, 10)
self.create_subscription(TimeSensor, 'vehicles/ego/sensors/time0', self.time_listener_callback, 10)
self.create_subscription(Range, 'vehicles/ego/sensors/ultrasonic_left', self.left_listener_callback, 10)
self.create_subscription(Range, 'vehicles/ego/sensors/ultrasonic_right', self.right_listener_callback, 10)
self.create_subscription(Range, 'vehicles/ego/sensors/ultrasonic_front', self.front_listener_callback, 10)

3.2 Setting Up ROS2 Subscriptions

The create_subscription method is used to subscribe to various topics.

In ROS, a subscription allows a node to receive messages from specific topics that are being

published by other nodes. When a message is published to a topic, all nodes that are

subscribed to that topic will receive the message and process it.

In this case, the script subscribes to the vehicle's sensors (topics) and control signals. Each

subscription links a specific topic to a callback function.

Whenever new data is published on a topic, the corresponding callback function is triggered

to process that data.

This architecture enables asynchronous communication, where the vehicle node can process

incoming messages as they are received without needing to block or wait for new data.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

self.speed_pid = PIDController(0.00001, 0.001, 0.0005)
self.steering_pid = PIDController(0.05, 0.001, 0.0005)
self.target_distance = 5
self.target_speed = 2.0
self.current_speed = 0.0
self.last_time = None
self.ultrasonic_left = None
self.ultrasonic_right = None
self.ultrasonic_front = None

3.3 PID Controllers for Speed and Steering

In this section, the script initializes two PID controllers—one for controlling the vehicle's

speed and one for steering.

It also defines target values for distance and speed, as well as variables to store sensor

readings and current speed.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

def send_control_signal(self, signal):
self.vehicle_client.control(

steering=signal.steering,
throttle=signal.throttle,
brake=signal.brake,
parkingbrake=signal.parkingbrake,
clutch=signal.clutch,
gear=signal.gear,

)

3.4 Control Signal "Publisher" and Control Commands Logic

This method publishes control signals to the vehicle, including steering, throttle, brake, and

gear settings based on the values received from the control system.

However, in this regard an important clarification must be made on how the commands could

be given to the vehicle.

This method for controlling the vehicle differs from using a publisher in how the control

commands are applied to the vehicle and the flow of data between nodes.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

In the subscriber-publisher model of ROS, commands are typically sent from one node to

another by publishing messages on a topic. The node responsible for controlling the

vehicle would publish control commands (such as steering or throttle values) to a specific

topic, and another node (acting as the vehicle interface) would subscribe to that topic,

receive the commands, and apply them to the vehicle.

In contrast, the send_control_signal method directly applies the control commands to the

vehicle client using the control() method from beamngpy. This method is called whenever a

new message is received on the /control topic thanks to the subscription.

In this case the node is both listening for incoming messages (subscriber) and acting

immediately on those messages by sending commands directly to BeamNG's simulation

interface via beamngpy and commands are executed as soon as they are received without

needing an intermediary node to republish the commands.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

def imu_listener_callback(self, msg: Imu):
a_x = -msg.linear_acceleration.x
self.current_speed += a_x * 0.1

def time_listener_callback(self, msg: TimeSensor):
current_time = msg.beamng_simulation_time.sec + msg.beamng_simulation_time.nanosec * 1e-9

if self.last_time is not None:
dt = current_time - self.last_time
self.control_vehicle(dt)

if self.last_time is not None and current_time < self.last_time:
self.get_logger().info("Level reset detected. Resetting variables...")
self.last_time = current_time
self.current_speed = 0.0
self.ultrasonic_left = None
self.ultrasonic_right = None
self.ultrasonic_front = None
self.last_time = current_time

3.5 Sensor Data Callbacks

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

def left_listener_callback(self, msg: Range):
self.ultrasonic_left = msg.range

def right_listener_callback(self, msg: Range):
self.ultrasonic_right = msg.range

def front_listener_callback(self, msg: Range):
self.ultrasonic_front = msg.range

3.5 Sensor Data Callbacks

These methods are the callbacks for all sensor data.

The time callback helps to calculate the time difference between updates and

manage control loops.

The first if condition makes sure the control system updates based on the time

elapsed between two messages and the second detects when the simulation is

reset, preventing inconsistencies that could arise from outdated sensor data or

incorrect time steps.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

def control_vehicle(self, dt):
if self.ultrasonic_left is None:

self.ultrasonic_left = self.target_distance
if self.ultrasonic_right is None:

self.ultrasonic_right = self.target_distance
if self.ultrasonic_front is None:

self.ultrasonic_front = self.target_distance

steering_error = self.ultrasonic_right - self.ultrasonic_left

if abs(steering_error) < 0.02:
steering_error = 0.0

scaling_factor = max(1.1, (self.target_distance - self.ultrasonic_front))
steering = self.steering_pid.compute(steering_error * scaling_factor, dt)
steering = max(-0.5, min(steering, 0.5))

3.6 Vehicle Control Logic

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview
speed_error = self.target_speed - self.current_speed
throttle = self.speed_pid.compute(speed_error, dt) if speed_error > 0 else 0.5
throttle = max(0.05, min(throttle, 0.1))
brake = 0.0
gear = 2

self.get_logger().info(f"steering: {steering:.3f} throttle: {throttle:.3f}")

self.send_control_signal(VehicleControl(
throttle=throttle,
steering=steering,
brake=brake,
parkingbrake=0.0,
clutch=1.0,
gear=gear
))

This section contains the main control loop. It calculates errors for steering and speed,

adjusts them using the PID controllers, and then sends the control commands to the

vehicle.

Davide Serpi – Stefano Cimmino PSD 2025

Test Script Overview

def main(args=None):
rclpy.init(args=args)
rclpy.spin(VehicleControlNode())
rclpy.shutdown()

4 Main Function to Run the Node

This is the entry point of the script. It initializes ROS 2, runs the vehicle control node, and

shuts down ROS 2 after the node finishes running.

Davide Serpi – Stefano Cimmino PSD 2025

Vehicle Control in Action

The video in the next slide shows the integration between ROS 2 and BeamNG.tech through

the described control script. On the left, the terminal executes the command to launch the

executable.

On the right, the simulation visualizes the vehicle moving along the track, maintaining a

constant speed while keeping a safe distance from the walls using ultrasonic sensors and a

PID controller.

The vehicle is able to complete multiple laps without collisions or interruptions,

demonstrating the effectiveness of the implemented control logic.

Davide Serpi – Stefano Cimmino PSD 2025

Vehicle Control in Action

Davide Serpi – Stefano Cimmino PSD 2025

Considerations on the Environment
Regarding the BeamNG-ROS2 environment, we can conclude:

• The environment is stable, and the scenario can be easily restarted by pressing the R key.

• Integration can be done without the need for a virtual machine, eliminating concerns about

changing the operating system.

• The maximum writing frequency for the sensor topics we observed was around 30 Hz, which

is sufficient but not the fastest, particularly for sensors like the IMU.

• The algorithms can be written in Python, leaving the freedom to use all the Python's

libraries and an easier coding language.

• There is a lot of freedom also for the track or map and scenario realization, you can create a

race, a time attack or a task event.

• The simulated vehicle can be used, with his 1:1 scale, for testing of the AI driving algorithm

meant for the real vehicle.

Understanding BeamNG:

Simulator Mechanics & Vehicle

Modeling
Understanding BeamNG.tech and Building a Custom Vehicle

Davide Serpi – Stefano Cimmino PSD 2025

Davide Serpi – Stefano Cimmino PSD 2025

Introduction

The following section of the guide focuses on BeamNG.tech and has been divided into two parts

for clarity:

❑ Part 1: BeamNG.tech

The first part covers the simulator's usage, physics engine and jbeam files syntax

❑ Part 2: Vehicle Creation

The second part provides a step-by-step walkthrough of how we created a 1:1 scale model of

the “Losi - DBXL-E 2.0”

The concepts explained in this guide focus on aspects that were useful for our implementation,

rather than covering everything that can be done with the simulator. Additionally, all the tools that

may be useful for model creation, debugging and simulation will be presented.

This guide is meant to support learning, and it is strongly recommended to have the simulator,

programs, or files shown in the guide readily available for a more effective understanding.

Davide Serpi – Stefano Cimmino PSD 2025

1. Essential Basics

• Game Modes

• User Interface and UI Apps

• Camera Modes, Slow Motion and Controls

• Nodegrabber, Teleporting Vehicles, Reset

• How to Install and Manage Mods

• Creating Vehicle Configurations

3. Tutorials

• Basic Car Tutorial – Autobello Kit Car

JBeam File Sections

2. Modding

• Introduction to JBeams

• JBeam Syntax

• The Part/Slot System

• Debug Tools

• Common JBeam Issues

• Vehicle Modeling Guidelines

• JBeam File Sections:

Nodes

Beams

Triangles

Hydros

Information

Slots

Flexbodies

Camera

Props

Pressure Wheels

Variables

Refnodes

Controller

Energy Storage

Powertrain

Part 1: BeamNG.tech

Davide Serpi – Stefano Cimmino PSD 2025

This section of the guide is entirely based on the concepts provided and explored in greater

detail in the official BeamNG documentation, which can be fully accessed at the following

link.

BeamNG Documentation

The goal of this guide is to introduce users to the capabilities of the simulator and provide

them with the necessary skills to understand the scripts and processes shown in Part 2 for

vehicle creation.

Part 1: BeamNG.tech

Davide Serpi – Stefano Cimmino PSD 2025

This subsection provides beginners with essential information on game modes, menu navigation, controls, troubleshooting

and more, starting from the Main Menu, immediately after launching the simulator.

1. Essential Basics

Campaigns, Scenarios and Time Trials offer a great way to

progressively familiarize yourself with the game, starting with

simple challenges and gradually increasing in difficulty.

Garage mode allows users to inspect vehicles, modify parts,

adjust setups, and change paint colors.

Freeroam mode allows you to freely explore a chosen map,

with the option to select the spawn point for your vehicle. It is

the most intuitive mode for quickly testing a vehicle and

experimenting with different scenarios.

Track Builder mode allows you to create a custom track and

test it. A detailed guide on this mode can be found in the

specific section of our manual.

Game Modes

Davide Serpi – Stefano Cimmino PSD 2025

Pressing the ESC key brings up two very useful menus. The first is called Side Menu, on top of the screen and contains

the following items (from left to right):

• Main Menu: displays the main menu

• Map: overview of the current level, displaying all the available missions, allowing to teleport around, and so on..

• Mods: in-game mod repository and mod manager

• Vehicles: vehicle selector from where you can change or spawn new vehicles, trailers and props

• Vehicle Config: vehicle parts selector also containing the tuning menu and configuration save/load menu

• Environment: settings for the time of day, weather, gravity and so on..

• Photomode: mode specifically designed to take artistic screenshots of the game

• UI Apps: edit, modify UI apps, as well remove/add them from the current layout

The second is the Radial Menu, and some of the useful items are (it depends on the vehicle chosen):

• Manage: controls for managing vehicle and spawns

• Powertrain: controls for all powertrain options (gearbox mode, 4WD, rangebox) and engine ignition

• Load/Save: load previously saved vehicle or saves vehicle in its current form

User Interface

1. Essential Basics

Davide Serpi – Stefano Cimmino PSD 2025

The default UI shown (the game mode is Freeroam in Gridmap v2) is

activated by default in all game modes and contains:

• Messages: space for alerts

• Vehicle Damage app: displays current state of different vehicle systems

• Race Time app: displays a timer if the game mode or scenario includes one

• Race Countdown: for start of a race/task

• Force Induction: displays pressure gauge (only for applicable vehicles)

• Tacho 2 (Tachometer): displays RPM and speed of the vehicle

• Simple Powertrain Control: allows selecting powertrain modes (only for

applicable vehicles)

User Interface

1. Essential Basics

The UI is fully customizable, allowing you to add new apps beyond

the default ones and adjust their position and size.

This can be done by pressing ESC > UI Apps, then clicking on Edit

Apps and Add Apps.

Apps provide various tools useful for vehicle testing, and we also

recommend using them during model debugging.

Davide Serpi – Stefano Cimmino PSD 2025

The simulator offers seven camera modes, you can switch

between them using keys 1-7.

Two very useful modes for debugging are Free Camera

and Slow Motion.

You can activate Free Camera by pressing Shift + C: it

allows you to move the view freely across any point of the

environment and move around the vehicle model to

better visualize the node and beam structure, if

necessary.

To activate Slow Motion, press Alt + ↑ or Alt + ↓: it allows

you to analyze frame by frame what happens to the model

before it becomes unstable, which is particularly useful

when testing unfinished or unstable designs.

You can increase the motion speed with Alt + →, and

decrease it with Alt + ←. The game will slow down by

x2/x4/x8/x16/x100 times.

Camera Modes and Slow Motion Controls

1. Essential Basics

Ctrl B

Ctrl N

Ctrl M

+ - Visualizes beams

+ - Visualizes nodes

+ - Visualizes nodes’ names

Davide Serpi – Stefano Cimmino PSD 2025

The Node Grabbing tool allows you to manipulate a vehicle’s nodes using

the cursor, making it useful for various testing and debugging tasks. You

can grab, drag, pin, and attach nodes.

To grab a node, hold CTRL, hover over the vehicle to highlight nodes, then

click and hold Left Mouse Button.

To adjust grab strength, use the Mouse Wheel while holding a node.

To pin a node, press the Middle Mouse Button while grabbing it.

This tool is particularly useful for: physically moving a stuck vehicle,

checking the vehicle’s overall weight, testing the tension limits of

beams, stressing the structure during tuning of beam stiffness and

damping, verifying that the node-beam structure is properly constrained.

Node Grabber , Teleporting Vehicles, Reset

1. Essential Basics

Another way to quickly move a vehicle is by teleporting it to the Free Camera position. Press Shift + C to activate Free

Camera, move the camera to the desired location and press F7 to teleport the active vehicle to the camera position.

But probably the most important command while using the simulator and testing models is the R key, for resetting the

vehicle and Ctrl + R to force reloading after tweaking the vehicle’s scripts.

Davide Serpi – Stefano Cimmino PSD 2025

How to Install and Manage Mods

1. Essential Basics

You can find community mods for the game in the Official Repository and on the

Official Forum.

Mods can be installed automatically through the in-game repository or via the

BeamNG.drive repository website.

To enable the online repository, you may need to go to the settings by pressing ESC

> Options (in the side menu) > Other (in the left-hand menu) > Scroll down and

toggle "Enable Online Features".

Through In-game repository:

1. Open the Repository from the Main Menu or Side Menu.

2. Search for a mod and use filters to refine your search. Check ratings and dates to avoid outdated mods.

3. Click Subscribe to download and activate the mod automatically. Subscribed mods receive automatic updates.

To manually install them keep in mind that mods are in ZIP format and extracting them is not required for them to work.

1. Download the ZIP file

2. Open your Userfolder(do not extract it)

3. Create a "mods" folder (if it doesn’t exist)

4. Move the ZIP file into this folder

Davide Serpi – Stefano Cimmino PSD 2025

How to Install and Manage Mods

1. Essential Basics

Installed mods can be managed through the in-game Mods

Manager. From here you can update, enable/disable mods, as

well as manage individual mods from the list.

There are two "mods" folders available:

1. One inside the BeamNG installation folder (Game Folder):

<your_BeamNG_location>\BeamNG.tech.v0.34.2.0\<your_BeamNG_user_folder>\0.34\mods

2. The other inside the user directory on your PC (User Folder):

C:\Users\<PC_user_name>\AppData\Local\BeamNG.drive\0.34\mods\repo

This separation allows you to modify the game without affecting the original installation, making it easy to revert to the

default state if needed.

The User Folder structure mirrors the Game Folder structure. If a file exists in the same relative location in both folders,

the game will prioritize the one in the User Folder over the original.

During vehicle debugging and script customization, to

ensure that file modifications take effect immediately without

restarting the simulator, go to: Mods > Mods Manager >

Deactivate all mods and then Activate all mods.

Davide Serpi – Stefano Cimmino PSD 2025

Creating Vehicle Configurations

1. Essential Basics

Vehicle Configurations allow you to customize a vehicle. You can access

the Vehicle Config menu from the Side Menu.

Parts: Allows selecting individual vehicle components, structured

hierarchically as defined in the JBeam files. You can show/hide, replace,

or remove parts. Some parts depend on others, meaning certain options

may only be available based on previous selections. Always press Apply

to confirm changes.

Tuning: Lets you adjust specific parameters of parts that have been pre-

configured for modification via the variables function in the scripts.

Adjustments are made using sliders or text input fields, with predefined

minimum and maximum values.

Color: Modifies the color of vehicle parts that support customization.

Save/Load: Enables saving and loading custom configurations.

Debug: Provides tools for testing new models or scripts. This section is highly

recommended for debugging and fine-tuning vehicle behavior.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Introduction to JBeams
Unlike most games that use RigidBody physics, BeamNG utilizes a SoftBody

physics system. This means that objects, such as vehicles, are fully deformable.

This is achieved through a Node and Beam structure, which acts like a skeletal

framework.

In this system:

- Nodes are points with mass that can move freely in space.

- Beams connect nodes (they always have a node at each end), maintaining a

fixed distance between them. They function as springs, have no mass, and do not

transmit twisting forces. Beams cannot bend but allow rotation around the nodes

they connect, functioning similarly to spherical joints.

When creating a node-beam structure, if the structure is not

properly constrained, it will tend to be unstable or collapse on

itself.

With enough nodes and beams, it is possible to build complex

structures like cars, with node-beam structures simulating the

chassis, suspension, wheels, and many other components.

Davide Serpi – Stefano Cimmino PSD 2025

The beamSpring value determines a spring’s stiffness, indicating the force needed to

compress it by a set amount.

Higher values suit rigid structures like the chassis, while lower values are used for flexible

materials like springs or rubber.

Stiffness shouldn't be confused with deformation: a low spring value allows compression but

remains elastic, returning to its original length, while a low deformation value means the

beam compresses permanently.

Basic properties of node-beam structures

beamSpring

beamDamp

Damping is the resistance to movement.

In a frictionless vacuum, a spring with no damping will tend to oscillate indefinitely. To avoid

this, we need to have some damping, which will resist movement with a force inversely

proportional to speed.

The main effect of damping will be to prevent oscillations, although damping will also have

an effect in absorbing some energy from deformation, reducing the strength of the rebound.

{"beamSpring":40000,"beamDamp":0}, //Example for suspension springs
{"beamSpring":0,"beamDamp":4500}, //Example for suspension dampers
{"beamSpring":8000000,"beamDamp":125}, //Structural vehicle components, such as suspension arms
{"beamSpring":14001000,"beamDamp":250}, //Steering rack, it needs to be super stiff to keep wheels pointing in the right direction

Soft Spring | Stiff Spring

No Damping | Some Damping

2. Modding – Introduction to JBeams

Davide Serpi – Stefano Cimmino PSD 2025

The beamDeform value sets the amount of force required before a beam permanently deforms. Once

deformed, the beam will no longer return to its original shape. This is central to creating vehicles that

deform accurately.

(In the image: Low deformation value (5000) | Practically infinite deformation value)

Basic properties of node-beam structures

beamDeform

beamStrenght

The beamStrenght value sets the amount of force required to break a beam. A broken beam

acts as if it has been snapped in half, this means it no longer connects two nodes together.

This is useful for allowing components to fall off a vehicle. For example, a bumper can be

made to fall off a car, by making the beams connecting it to the chassis break easily.

As shown in the following image, breaking beams will also result in the visible mesh being

destroyed too.
Low Strenght| High Strenght

nodeWeight

The nodeWeight value can be used to adjust how heavy each individual point of vehicle is.

However, if the overall stiffness of all connected beams are too high, it will begin to vibrate and may even explode. To

prevent this vibration, you either need to make the node heavier, or the beams less stiff. To make things even more

complicated: beams will also start to vibrate and explode if your beamDamp is too high.

2. Modding – Introduction to JBeams

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Introduction to JBeams
Before continuing, the provided plugin for viewing JBeam files enhances your editing experience

by highlighting syntax errors and improving readability, which helps avoid common mistakes

during development, tailored specifically for JBeam and JSON files. This makes it much easier to

navigate and modify complex vehicle configurations.

It allows even a 3D visualization of the beam and node structure and the meshes.

It makes easier to move nodes and directly update their position inside the script.

You can download it through the extensions research directly using Visual Studio Code or you can

download it in the following link.

Davide Serpi – Stefano Cimmino PSD 2025

JBeam is the file format that defines the physics skeleton in the BeamNG engine. It is called JBeam

as it is based on JSON (with some exceptions) in order to define node/beam constructs.

Just about everything is case sensitive, and it is not at all friendly to syntax errors, so be careful!

Comments: C-style, multi-line, and single-line comments are supported: //... and /* ... */

Commas: all commas are optional, but it is advised to only omit the commas at the end of lines.

General Concepts

2. Modding – JBeam Syntax

"vehicle": {
 "nodes": [/* ... */],
 "refNodes":[
 ["ref:", "back:", "left:", "up:"],
 ["f3r", "f5r", "f4l", "f8r"],
 ["f2r", "f3r", "f1l", "f1r"]
]

}

Tables function like spreadsheets with a header row defining column names and rows containing

data. This format saves space by avoiding repeated keys.

In the example, f3r is the first value in its row in the column ref: of the

table refNodes that is contained in vehicle.

Tables are used when you have a lot of the same data, so you save

space specifying the key over and over again.

Davide Serpi – Stefano Cimmino PSD 2025

"vehicle": {
 "nodes": [
 ["id", "posX", "posY", "posZ"],
 ["f3r", -0.35, -1.56, 0.25]
],
 "refNodes":[
 ["ref:", "back:", "left:", "up:"],
 ["f3r", "f5r", "f4l", "f8r"]
]

}

Shown in the colon (:) in the header row of a table specifies a link

(section links) to another section of the vehicle. The format is as

follows: valueName:targetSectionName. If targetSectionName is omitted,

it will be nodes.

In the example, with "ref:nodes": "f3r" the engine would

reference to id = f3r in the nodes table.

Dictionaries are key-value data storages. They are used

when the data is quite unique and does not repeat itself so

much. There is no post-processing required with

dictionaries, but they are rarely used.

"vehicle": {
 "cameraExternal": {
 "distance": 6.7,
 "distanceMin": 9,
 "offset": {"x": 0.43, "y": 0.11, "z": 0.55},

 "fov": 77,
 },
}

A scope modifier applies a property to all subsequent

rows at the same level. The modifier {"nodeWeight": 3}

affects all following rows within the same scope. Unlike

normal table rows (which use []), scope modifiers use {} to

define properties globally.

"vehicle": {
 "nodes": [
 ["id", "posX", "posY", "posZ"],
 ["f3r", -0.35, -1.56, 0.25],
 {"nodeWeight": 3},
 ["f2r", 0.37, -0.98, 0.22],
 ["f1r", -0.65, -0.64, 0.22]
]

}

2. Modding – JBeam Syntax

General Concepts

Davide Serpi – Stefano Cimmino PSD 2025

[...],
["f3r", -0.35, -1.56, 0.25],
["f5r", 0.00, -1.58, 0.24],
{"group":"body"},
["f4l", -0.37, -0.98, 0.44],
["f8r", -0.37, -0.98, 0.22],
{"group":""},
["f2r", 0.37, -0.98, 0.22],
[...],

Negating the effects of scope modifiers is also possible by setting

them to empty values. In the example the group modifier would only

apply to node f4l and f8r.

The example contains a table row modifier with a dictionary

behind the columns. These values are applied for the row only

and do not leak anywhere else. The node f2r would have the

nodeWeight property, the node f3r would not.

[...],
["f2r", 0.37, -0.98, 0.22, {"nodeWeight": 3}],
[...],

2. Modding – JBeam Syntax

General Concepts

Davide Serpi – Stefano Cimmino PSD 2025

Anatomy of a Vehicle JBeam

Vehicles in BeamNG are build together with parts, those parts contain then the so-called sections

that contain the actual data.

Every jbeam file is a flat key-value dictionary of available parts this

file contains. The key is the name of the part, its value are its

sections. During loading, the engine constructs a hierarchical

tree of parts and must identify the base or root part. This is

determined by "slotType": "main", which designates the root part

and allows it to be spawned directly.

Vehicle JBeam

files folder

2. Modding – JBeam Syntax

Davide Serpi – Stefano Cimmino PSD 2025

Advanced Concepts – Scaling process modifiers

{
 "vehicle": {
 "slots": [
 ["type", "default", "description"],
 ["vehicle_body","vehicle_body", "Body"],
 ["paint_design","", "Paint Design"],
],
 "scaledragCoef":2.15,
 "controller": [
 ["fileName"],
 ["vehicleController", {}],
],
 }

}

There are some advanced out-of-bounds modifiers that can exist in the JBeam syntax. only used in

very specific circumstances, like scaling process modifiers. They are declared next to the Tables

and Dictionaries in the main part of Jbeam and they are used to scale the numeric values of other

modifiers.
The modifier works by searching for the

string scale in keys inside the Jbeam

structure next to the tables and

dictionaries, and then multiplying all

modifiers with the name specified in the

rest of the string with the provided value.

It is most often used to fine-tune the overall drag coefficient of the vehicle, but it’s possible to

scale all other modifiers with it too. It should only be used in specific cases.

For example, the one shown will multiply all dragCoef

modifiers by 2.15. It works globally on the whole vehicle,

until a part that negates it is loaded.

2. Modding – JBeam Syntax

Davide Serpi – Stefano Cimmino PSD 2025

Advanced Concepts – Disable modifiers

[
{"disable": true},

["5","7","6"],
["5","6","4"],

["0","5","4"],

["2","6","7"],
["2","7","3"],
{"disable": ""},

]

The disable modifier is a special modifier that will force rows to be skipped by lua and not read.

For example the following lines will not be read, but the lines below will:

It is useful when combined with Slot Variables (more on

that later) which pass a Boolean value. That allows you to

merge multiple variants of a Jbeam part with small

changes, which have separate slotTypes, into one part, with

the sections that contain changes being surrounded with

Disable modifiers which use Boolean slot variables.

[
 {"disable": "$variant1"},

 ["5","7","6"],
 ["2","7","3"],

 {"disable": "$variant2"},

 ["5b","7","6"],
 ["2b","7","3"],

 {"disable": ""},
]

The Include modifiers allows storing JBeam table data in an external CSV

file, referenced with a path relative to the game folder.

2. Modding – JBeam Syntax

Davide Serpi – Stefano Cimmino PSD 2025

Advanced Concepts

JBeam functions allow dynamic calculations and string concatenation by evaluating mathematical

and logical expressions. They support standard Lua operators and built-in functions for rounding,

clamping, and table operations. Numeric values in JBeam can be replaced with functions using $=

inside double quotes. The math library is a modified version of Lua’s standard library but doesn’t

require the math. prefix.

Since functions haven’t been necessary for our work, we won’t cover them in detail.

2. Modding – JBeam Syntax

Davide Serpi – Stefano Cimmino PSD 2025

BeamNG's car modification system relies on components and slots, organized in hierarchical levels,

where available options depend on previously selected components.

Everything related to what you can see in the parts selector (Side Menu > Vehicle Config >

Parts) is defined in the jbeam for each component.

{
 "Buggy_Sospensione_A": { //Internal name of the component
 "information": {
 "authors": "Stefano_Davide",
 "name": "Sospensione Anteriore" //Name in the part selector
 },
 "slotType": "Buggy_Sospensione_A", //Slot Type
 "slots": [//Slots
 ["type", "default", "description"],
 ["Buggy_Ruote_A", "Buggy_Ruote_A", "Ruote_Anteriori"],
 ["Buggy_Differenziale_A", "Buggy_Differenziale_A", "Differenziale Anteriore"],
 ["Buggy_Sterzatura", "Buggy_Sterzatura", "Sterzatura"]
],

 [...]

Each part has an internal name, defined by the very first line of a part’s jbeam and will be used by

the game to refer to that part, it is however not seen by the user. It is important for this name to be

unique, to avoid issues like parts overriding each other.

2. Modding – The part/slot system

Davide Serpi – Stefano Cimmino PSD 2025

The information section shows some basic information on that component, including the name that

will be shown in the parts selector.

Each part also has a slotType, which identifies where in the vehicle it fits (in the second part, an

extensive example of that will be given).

The slot type allows you to have multiple parts with this specific slot type that would act as

alternatives, with every part with an identical “slot type” appearing as different options of the

same part in the part selector.

One unique slot type is main, which

refers to the base component of the

vehicle. This identifies the

component as being the root part

of the vehicle and will be the first

component loaded by the game.

There can only be one part per

car with that slot type.

{"Buggy":
 {"information":{
 "authors":"Stefano_Davide",
 "name":"Buggy",
 }
 "slotType" : "main",
 "slots": [
 ["type", "default", "description"]
 ["Buggy_Telaio","Buggy_Telaio","Buggy Telaio"],
 ["Buggy_Motore","Buggy_Motore","Buggy Motore"],
 ["Buggy_Batteria","Buggy_Batteria","Buggy Batteria"],
 ["Buggy_Sospensione_A","Buggy_Sospensione_A","Buggy Sospensione Anteriore"],
 ["Buggy_Sospensione_P","Buggy_Sospensione_P","Buggy Sospensione Posteriore"],
],

 [...]

2. Modding – The part/slot system

Davide Serpi – Stefano Cimmino PSD 2025

The slots section defines which components are the “children” of that component based on their

slotType. If we follow with the example of our front suspension, you would find front wheels,

steering and front differential.

The result is a parts selection tree, with the “main” part at the top, and multiple layers of “children”

components.

Main

Buggy Batteria

Buggy Motore

Buggy Telaio

Buggy Sospensione
Posteriore

Buggy Sospensione
Anteriore

Ruote Anteriori

Differenziale
Anteriore

Sterzatura

2. Modding – The part/slot system

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
To help with Jbeam design, the game has multiple debug views that allow you to get more

information about your Jbeam.

The console can be accessed using the ` (or ~) key, but for

those without a US keyboard layout, it is recommended to

change it in Options > Controls > General Debug > Toggle

System Console and assign a more convenient key. It shows

information and errors that happen while loading a car, and

can be helpful to investigate why a vehicle isn’t loading, has

missing textures, etc.

Alternatively, the console can be accessed as previously

mentioned (through PowerShell when launching the

simulator).

The information is color coded, with errors in red, warnings in yellow, info in green and debug

information in blue. You can hide the various types of messages by clicking on the buttons in the

upper left corner.

The text box at the bottom is used to enter commands.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
The Debug UI contains many ways to debug the vehicles’ JBeam physics

properties. This UI includes the debug modes listed and also includes

vehicle spawning functions.

The Debug UI features a checklist-style part selector for debugging tools.

Highlighted parts are affected, while others are not. A checkmark icon

allows quick selection/deselection of all parts. Changes in the vehicle’s

part selector or visibility settings sync automatically. A search bar is also

included.

The mesh visibility option is useful for

displaying nodes and beams while still keeping

track of their position within the vehicle.

The node visualization is a fundamental tool. The debug views can be accessed by default with

Ctrl + M. In the debug UI, you can edit the width and transparency of the highlight.

Node Visualization

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
The following views are available:

1. Simple - Shows the nodes with a color code based on collisions.

Yellow nodes have both internal and external collision, light blue

nodes have external collision but no internal collision, purple

nodes have no collision at all

2. Weights - Shows the nodes as dots whose size varies based on the

weight of the node, color coded the same way as in the Simple

mode.

3. Displacement - Highlights the nodes that have displaced from

their initial position on spawn via elastic deformation. The bigger

displacement, the more opacity the highlight color has.

4. Velocities - Shows node velocity compared to the reference nodes.

5. Forces - Shows a vector of the total forces applied on a node. Can

be very useful to find instabilities or nodes which are being

pushed by unwanted triangles collisions.

6. Density - Shows if the node is currently in the air (green) or in

water (red).

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
The node text views can be accessed by default with Ctrl + N. In the debug UI, you can toggle

whether these text are also shown for wheel nodes (turned off by default). We can find:

1. Name - Shows the name of each node as defined in the jbeam. If it has no name, which is true

for wheel nodes, it shows the id number instead.

2. Numbers - Shows each node’s id number. Mostly used by lua and the physics engine.

3. Name+Numbers - Combination of the two previous modes.

4. Weights - Shows each node’s name and weight in kg. Also shows the total weight of all nodes

around the top right corner of the screen.

5. Materials - Shows each node’s name and assigned material.

6. Groups - For each node, shows its name and the group it belongs to. Requires turning on the

“Spawn in Debug Mode” checkbox in the debug UI to work.

7. Forces - Shows each node’s name and the value of the vector of total forces applied on it. Also

shows average force around the top right corner of the screen. Couplers are shown with red

font instead of black, and are not counted in the average calculation.

8. Relative positions - Shows each node’s name and its position relative to the vehicle’s local

coordinates.

9. World positions - Shows each node’s name and its position relative to the world.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
Node debug text shows extra debug text which contains info about some additional properties

defined for some nodes. Can be accessed by default with Ctrl + K.

The beams debug views offer multiple views to help show the various states of beams and

represent another fundamental tool. They are useful to help building your jbeam, and investigate

issues caused by instability or leaking properties. The beam debug views can be accessed by

default with Ctrl + B. Some beam debug views have a value range parameter to limit the values

that are visualized. This can be set through Vehicle Config > Debug > “Range Min” and “Range

Max” sliders and the “Show Infinity Values (FLT_MAX)” checkbox.

Beam Visualization

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
This section contains beam visualization modes based on the current status of the beam in game.

Available modes are:

1. Simple - Shows the beams in green (shown in the image).

2. Type - Draws the beams different colors depending on their type. Regular beams are green,

support beams are purple, bounded beams are yellow, hydro beams are dark blue,

pressured beams are cyan, l-beams are grey and anisotropic beams are orange. This color

legend can be found in the game as well (shown in the image).

3. With broken - Same as the “Type” view, but shows broken beams in red.

4. Broken only - Only draws broken beams. Useful to investigate issues like beams breaking on

spawn.

5. Stress - Shows how much stress is on the beams, coloring them red in compression, and blue in

tension. Useful to see instability issues and vibration. There are two stress modes, one with

and one without constraining range values in the debug UI, the latter named “Stress (Old)”.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
6. Displacement - Shows how much the beams are displaced via elastic deformation from their

initial lengths. Blue means the beam has been stretched and red means that it has been

shortened. Debug UI lets you constraint range values.

7. Deformation - Shows how much the beams are permanently deformed. Blue means the beam

has been stretched past its initial length, red that it has been shortened. Debug UI lets you

constraint range values.

8. Break Groups - Highlights the beams by breakGroups with different colors. Useful to investigate

issues of breakGroups that aren’t working as they should, or leaking (shown in the image).

9. Deform Groups - Highlights the beams by deformGroups with different colors.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
10. Bounded Beam Bounds - Shows only bounded beams.

• If the beam has not expanded or compressed from the spawn length (taking

precompression into account), it is shown fully in green with no overshoot length from the

nodes.

• If it has been shortened from the spawn length, then the current length is shown in green,

and it is extended to the spawn length on both sides by dark blue color. If the beam’s

shortBound has been triggered, it is shown in cyan color on top of the blue, and additionally

light blue visualizes the transition zone.

• If the beam has been extended from the spawn length, then the green color shows the

original length, while the extension is filled in by red color. If the beam has expanded

beyond the longBound limit, the remaining extension is filled in with yellow color, and

additionally orange visualizes the transition zone.

11. Support Beam Bounds - Does the same as above, but for support beams. Transition zones are

not shown due to being zero length. These beams frequently utilize precompression lower than

1 combined with high longBound values, so they will often have long reaching yellow longBound

limits.

12. Frequency - Highlights beams which have the set frequency with the set max amplitude.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
There also beam visualization modes which visualize beams based on their properties set in

Jbeam. These debug modes visualize lower end range values in white, upper end range values in

red, and infinity (FLT_MAX) values in purple. The modes for these are:

13. Beam Damp

14. Beam Damp Fast

15. Beam Damp Rebound

16. Beam Damp Rebound Fast

17. Beam Damp Velocity Split

18. Beam Deform

19. Beam Limit Damp

20. Beam Limit Damp Rebound

21. Beam Long Bound

22. Beam Precompression

23. Beam Precompression Range

24. Beam Precompression Time

25. Beam Short Bound

26. Beam Spring

27. Beam Strength

28. Bound Zone

29. Damp Cutoff Hz

30. Damp Expansion

31. Deform Limit

32. Deform Limit Expansion

33. Deformation Trigger Ratio

34. Long Bound Range

35. Precompression Range

36. Short Bound Range

37. Spring Expansion

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
Neither slidenodes nor torsion bars were used, however, these tools can be helpful:

- Torsion Bar Debugging: Available in the debug UI, it visualizes torsion bars, useful for

debugging rigid structures like subframes and suspensions. Different modes highlight intact,

broken, stressed, or deformed bars using colors and opacity.

- Rails & Slidenodes Debugging: Also in the debug UI, it helps identify misaligned slidenodes

causing beam breakage or deformation on spawn. Modes allow distinguishing between intact,

broken, and detached elements.

Collision Triangle Debugging (Ctrl + T) helps analyze

collision and aerodynamics. The Simple mode highlights

the front side of triangles in green and the rear in purple.

Other modes differentiate non-collidable, pressured, or

broken triangles with distinct colors.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
There are specific debug functions for aerodynamics,

accessible via the debug menu. The Aerodynamics

Debug visualizes key forces: drag (red vector),

lift/downforce (blue vector), and the angle of attack.

The Center of Gravity (Ctrl + G) tool shows the CoG

(red dot) and the Center of Pressure (CoP) (blue dot).

The tire contact point debug shows ground contact

point for each tire of the vehicle.

The steering geometry debug casts rays from wheel centers in

both directions. The intersection points between them help

visualize and debug the steering geometry. The rays have

adjustable length.

While not a debug tool by itself, the mesh visibility scale is very useful to help you see the

various debug views better by making the mesh partly or full transparent. The default keys are

Ctrl + NumpadPlus and Ctrl + NumpadMinus to raise and lower mesh visibility, respectively.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
BeamNG includes a number of useful debug UI apps that can be added to

the interface using the UI Apps tab in the top side menu.

Here’s some of them:

- Advanced Wheels Debug shows the toe and camber angles for every

wheel on the vehicle, and additionally caster and SAI angles for steer

axis wheels. Can be used to help set up and debug suspension

geometry and also makes refNodes alignment issues easy to notice.

- Node/Beam Info reliably displays Jbeam related statistics of the

vehicle, such as a number and percentage of deformed or broken

beams and torsionbars, precise total weight, number of triangles, etc.

- Powertrain Visualization visualizes the powertrain tree of the vehicle

with all of its components and the torque going through it. This can be

changed to power by clicking on the ’torque’ text. Highlighting a

component with the mouse will display its name and RPM. Some

components such as locking wheel axles, disconnectable shafts,

locking differentials and rangeboxes can be interacted with by clicking

on them in the app.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Debug Tools
- Torque Curve is practically a must have for tuning engines, this app

shows the torque to RPM curve in Nm and power to RPM curve in Ps,

displaying the current and peak power and torque values together with

the current point on the curve.

- Weight Distribution shows the load on each wheel of the vehicle in

different ways at once: as a background visual highlighting wheels with

over 25% load, as weight load in kg, force load in N, and percentage of

total weight on each wheel.

- World Editor can be accessed with the F11 key by default, contains a

few useful tools for Jbeam debugging. They can be added via the

Window tab.

- Vehicle Editor is a group of useful Jbeam tools which can be accessed

via Shift + F11 or from the World Editor tabs: Window > Experimental>

Vehicle Editor. It has two tabs: Static Editor, focused on editing Jbeam

files, and Live Editor, focused on debugging Jbeam behavior in real

time. Both have customizable layouts that can be saved,

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Common JBeam Issues
Your first reflex with any jbeam issue is to check console for error messages.

Among the most common errors are syntax-related issues, such as missing quotation marks,

missing brackets, and duplicate component names.

Flexbody issues can cause a part to load with its JBeam structure but without the flexbody

appearing:

- Offset Flexbody: If the model appears in the wrong position despite being correct in Blender,

the part’s origin is likely misaligned.

- Missing Flexbody: If the flexbody doesn't appear, the mesh may be missing from the mod’s

folder or incorrectly named in the flexbody section.

- Missing Nodegroup: If there are no console errors but the flexbody is invisible, the referenced

nodegroup may be missing or misnamed.

- VY Node Error: The physics engine needs at least three nodes to map the flexbody properly.

Issues arise if there are too few nodes, if they are misaligned, or if they don’t adequately cover

the flexbody.

- No Material Assigned: If no material is assigned in Blender, the model won’t render in-game.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Common JBeam Issues
Most of these issues can be resolved by checking model origins,

ensuring correct naming, and assigning sufficient nodes.

Structural issues don’t usually generate console errors but can

cause visible problems like vibration or excessive floppiness:

- Weak or Deforming Parts: Check beam parameters, as

incorrect deform values, stiffness, or damping settings can lead

to instability.

- Collapse on Spawn: Often caused by a lack of bracing. Flat

components may need a rigidifier node, which should be

positioned correctly to provide stability.

- Instability: Excessive beamSpring or beamDamp values relative to

node weight can cause extreme vibrations or even make the

vehicle disappear on spawn. This can be diagnosed using the

Stress debug view and resolved by adjusting beam

stiffness/damping or increasing node weight. Nodes being

pushed on spawn can also contribute to instability.

If you already have a rigidifier

node, you might need to move it

further away from the surface.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Common JBeam Issues
Major deformation on spawn have a few possible causes, to confirm these you can look at the

stress debug just as the car spawn, using 100x slow motion. You should see vibration happening

just as the car spawn.

It might also be caused by excessive or excessively quick beam precompression. Make sure that

you didn’t make an error and are precompressing the beam too much.

Other common console issues:

- Duplicate beams can happen with typos and errors while copy pasting. Fixing those simply

requires removing one of the superfluous references to said beam.

- Another error you might see which won’t necessarily affect the functionality of your mod is a

missing node error. This can either be the result of a typo, or a beam/triangle that you forgot to

remove after removing a node.

- A missing flexbody error might happen if you based your jbeam on pre-existing jbeam or did

some changes in your flexbodies. If there are no visibly missing meshes on your vehicle, simply

remove the reference to that flexbody in your jbeam.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Vehicle Modeling Guidelines
BeamNG utilizes the Collada (.dae) file format for its models. While there are some differences,

such as how parts are separated and the inclusion of additional details—especially for mechanical

components—creating models for BeamNG is quite similar to modeling vehicles for other video

games.

To help you avoid common issues, here are some essential guidelines to follow. If you're new to

3D modeling, you may find Blender Guru's tutorial series on YouTube a great starting point.

Blender Beginner Tutorial or Beginner Blender Anvil Tutorial

It's important to find a balance between polygon density, visual

quality, and performance. BeamNG continuously recalculates vertex

positions based on chassis deformation, making high-poly models more

computationally demanding. To optimize performance, it's best to

minimize unnecessary polygons and rely on normal maps (special

textures that simulate surface details) for details like panel gap bevels,

underbody cutouts, structural components, and bolts. Using vanilla

models as a reference can be extremely helpful in maintaining an

efficient polycount.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Vehicle Modeling Guidelines
Each component must have an assigned material. We recommend using existing materials or

custom ones with a unique prefix, such as your mod’s name, to avoid conflicts with BeamNG’s

common materials.

For modeling, parts that can detach or move independently should be modeled separately and

have their own mesh, but there’s no hard rule. Components using deformGroups, like lights and

windows, should also be split into multiple parts, each with its own material.

Similarly, part names should include the mod’s name or a unique prefix to prevent conflicts with

existing game files.

The game will be able to load meshes from multiple dae files as long as they are located inside

the vehicle’s folder, or the common folder.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Vehicle Modeling Guidelines

Part origins are a common issue. You can see a part’s origin in Blender

by clicking on the component and looking for the orange dot (as

shown).

For flexbodies , which are components whose position and shape will

be affected by the jbeam (chassis, suspension components, etc), the

position of the part’s origin must be at 0,0,0. If the origin of one of your

component’s origin is offset, the part will show up offset in BeamNG.

Part Origins

If you have this issue, within Blender press Ctrl + A and choose “All transforms”.

To export your model, start by making sure you are in “Object mode”

and aren’t editing the geometry of any object. Then go into File >

Export > Collada

Exporting Models

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Vehicle Modeling Guidelines

In the export window, make sure to go under “Geom” and tick the “Apply

Modifiers” box and set it to “Render”. This will make sure that any

modifiers like mirrors and edge split gets applied to the exported model.

Then press “Export Collada” to export the model into your mod’s folder.

Exporting Models

If you have BeamNG open with your car loaded in another window, this will cause the vehicle’s

model to get updated immediately, which can be useful to see how it looks in game after small

changes.

Importing models from the game

A first step in a lot of modding projects is to import parts from vanilla models. Go to

“<your_BeamNG_location>\BeamNG.tech.v0.34.2.0\content\vehicles". You should see the zip files of all the

vehicles and props in the game. It includes a folder for each car/prop, along with a “common”

folder which contains all assets that are shared between vehicles (this includes wheels, tires,

components shared between the D/H-Series, etc).

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – Vehicle Modeling Guidelines

Importing models from the game

Take note however that all those names are the “internal” names of vehicles. Some are fairly

obvious, like “etk800” is the ETK 800 series. However, especially older cars, the internal name is

referring to the car’s body style.

Open the folder until you see .dae file you need. For cars it should be in the same folder as the

jbeam files.

The first step is to copy it somewhere outside of the zip file, like on your desktop, so Blender can

access it. In Blender then select File > Import > Collada and select the file you just chose.

The model should then appear in Blender.

Do note that the model usually includes every single option component available for the car;

this means that there can be multiple versions of bumpers and other components included. The

model files for vehicles won’t include wheels, tires, and shared components like the engine and

suspension on the pickup/van. If you need to import those components, their model files are

located in the “common” folder.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections
Jbeam files are divided into multiple sections which each represent one type of element in a

vehicle’s structure and we will further explore the ones that were useful in the creation of our

vehicle model.

Basic structural elements

These are the main elements of any jbeam and handle the shape and collisions of a vehicle.

- Nodes: The first element in a node/beam structure. They are point masses and handle most of a

jbeam’s collisions along with the weight of the structure.

- Beams: Connectors between nodes. Beams allow for flexibility and deformation in a jbeam

structure and define how the different elements are connected to each other.

- Triangles: Surfaces defined between nodes. Triangles are used for aero calculations, and for

collisions between vehicles.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections

These elements enable advanced structures and are useful for specific applications:

- Hydros: Beams whose length can be changed on command.

- Rails and slidenodes: Allow the definition of nodes that slide along a rail. Used for things like

steering racks, rigidifying some structures, etc

- Thrusters: Allows to propel structures directly. Used for testing purposes, jato and others.

- Torsion bars: Creates a torsion resistance between two lever arms. Used for sway bars and to

rigidify some structures.

- Torsion hydros: Similar to hydros but instead changes the angle between two lever arms. Used

for some steering systems, and other types of actuators.

Part/slot system

These elements are mostly used within the part/slot system, either to define some additional

information related to the part, or the slots within a part:

- Information: Defines a few basic parameters associated to the component, like it’s display

name in the part selector.

- Slots: Defines the list of slots within a component, along with the default selection.

Advanced structural elements

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections

Graphical and sound elements

- Flexbodies: Defines the models that will be used to graphically represent your vehicle, and

how they are tied to the nodes for deformation.

- Glowmaps: Allows the definition of materials that can switch on demand. Mostly used to switch

the material of lights to an emmissive material when the lights are turned on.

- Soundscape: Defines sound effects to be played when certain conditions are met, along with

the node used as an emitter.

- Cameras: Defines the position and angle of the various cameras in the vehicle, including

exterior and interior cameras.

- Props: Animated 3D elements that do not deform with the jbeam structure. Used for things like

gauges, pedals, steering wheels, etc.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections

Others

- Variables: Allows the definition of adjustable parameters for a vehicle, usually adjustable

suspension and drivetrain components.

- Triggers: Defines set triggers that the player can activate with the mouse to control different

functions of a vehicle.

- Refnodes: Set of nodes which define the central coordinate system of a vehicle.

- Controller: Used to add special functions to a vehicle, like police lightbars, electronics assists,

etc.

Powertrain

The last section is the elements related to powertrain components, like powertrain definitions and

wheels:

- Powertrain: Used to define the different powertrain elements within a vehicle’s powertrain.

- Pressure Wheels: Allows to define wheels with a pressured tire model.

- Rotators: Alternative to pressure wheels in specialized applications, where power needs to be

sent to something other than a wheel like a propeller.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes
Nodes are mass points and the core of the BeamNG physics,

they are dimensionless (infinitely small) mass point,

defined by a unique name and a position in 3D space.

Nodes can have any string for their name. A good naming

scheme is a sequence of relevant letter, number and letter(s)

again, signifying which side of the vehicle it’s on. A node

sitting in the middle (posX = 0) would have no letter suffix.

Nodes also have many properties which can be set by

placing dictionary lines above the nodes which are desired

to be affected. Node weights are in kilograms, and

coordinates are in meters. The “group” modifier is for

assigning flexbodies. Node material only affects sound and

particle properties, not physics.

The game engine uses a z-up coordinate system and SI units

for most parameters.

This is the node and beam structure of our

vehicle (body). The progression of node

names is shown in orange from left to right

and in blue from front to rear.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

In BeamNG, collision is handled by nodes alone, beams can not collide with anything. There are

three types of node collision:

1. Heightmap - with the ground

2. Static - with collision mesh faces of map objects

3. Dynamic - with vehicle triangles, additionally this can be divided into:

- Self-collision (triangles of the same vehicle node belongs to)

- External collision (triangles of other vehicles)

Collision system

Heightmap collision differs from static collision by having several layers which helps vehicle tires

rotate smoother. Collision types have priority, with dynamic being prioritized over static and

heightmap collisions. Practically this means that with high enough force a node can be slightly

pushed through a solid wall or the ground. It will pop back out once the (surface) triangle stops

pushing it.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Collision system

In Jbeam, these types of collision are controlled by three properties:

- The collision argument affects all types of collision and has the highest priority enabling any

other collision type will not work if this one is disabled.

- The selfCollision argument only affects the self-collision type of dynamic collision.

- The staticCollision argument affects static and heightmap collision.

In BeamNG, when a node approaches a surface triangle, collision forces attempt to stop it, while

anti-clip mechanics determine on which side of the triangle the node will end up. Collision forces

start applying slightly before contact to prevent clipping, and various properties allow fine-tuning

of this behavior. Additionally, node groups influence collision handling by preventing nodes from

colliding with triangles formed by nodes in the same group. This system helps with optimization

and structural design.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Required arguments
id
name

dictionary
type

Defines the node name. Need to be unique for the whole vehicle

posX
name

number
type

The X (left/right) position in 3D space (m)

Left is positive, right is negative

posY
name

number
type

The Y (forward/back) position in 3D space (m)

Backward is positive, forward is negative

posZ
name

number
type

The Z (up/down) position in 3D space (m)

Up is positive, down is negative

Optional arguments

Will be divided them into categories and sorted from most to least frequently used.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Optional arguments - General
nodeWeight
name

number
type

option.nodeWeight
default

The weight of the node in kg

As of game version 0.35.0.0 the default weight of a node is 25 kg

group
name

string
type

Groups a set of nodes into a group that can be used later in other sections

This is mostly used to map visible model parts to groups of nodes for deformation.

Nodes can also be assigned to multiple groups on an individual basis, as per the following example:

["f6ll", 0.76, -0.72, 0.83, {"group":["coupe_engine","coupe_windshield"]}],

nodeMaterial
name

string
type

options.nodeMaterial
default

Physics material of the node, rubber, metal, etc.

The node physics material affects the default sound events generated by the node, as well as the type of emitted particles.

The name should be “NM_” + name of the physics material, for example “NM_METAL”. As of version 0.35.0.0 the

following physics materials are available:

METAL, PLASTIC, RUBBER, GLASS, WOOD, FOLIAGE, CLOTH, WATER, ASPHALT, ASPHALT_WET, SLIPPERY, ROCK,

DIRT_DUSTY, DIRT, SAND, SANDY_ROAD, MUD, GRAVEL, GRASS, ICE, SNOW, FIRESMALL, FIREMEDIUM, FIRELARGE,

SMOKESMALLBLACK, SMOKEMEDIUMBLACK, STEAM, RUMBLE_STRIP, COBBLESTONE, FOLIAGE_THIN, SPIKE_STRIP

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Optional arguments - Collision

collision
name

boolean
type

true
default

If the node can collide with anything

This argument affects all types of collision and has the highest priority - enabling any other collision type will not work if

this one is disabled.

These define what the node will collide with. Also used in every Jbeam file. Usually, collision and

selfCollision are used together, while staticCollision is rarely used.

selfCollision
name

boolean
type

false
default

If the node can collide with the vehicle it

belongs to

This argument only affects the self-collision type of dynamic collision. It is commonly set to false for nodes that would cause

issues if they collided with the rest of the vehicle, but still need to collide with everything else, for example wheels and tires.

staticCollision
name

boolean
type

true
default

If the node can collide with map objects and

terrain

This argument affects static and heightmap collision. It is set to false for wheel center nodes, which can’t collide with the

world as that would make the collision offset from the rim edges but still need to collide with other vehicles for correct crash

deformation.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Optional arguments – Friction

frictionCoef
name

number
type

1
default

Static friction of the node

By default, this affects both static and dynamic friction, which for most vehicle parts are the same for optimization purposes.

Define the node’s static and sliding friction. frictionCoef is used in every Jbeam file and most of

the time set to 0.5, slidingFrictionCoef much less, usually just in tires, as its default value is the same

as the value set in frictionCoef.

slidingFrictionCoef
name

number
type

frictionCoef
default

Sliding friction of the node

When this argument is not set, the sliding friction will default to the same value as static friction.

Optional arguments – Powertrain

These arguments are used by powertrain components of the car such as the engine.

engineGroup
name

string
type

A different kind of group, related to powertrain simulation

Used by components such as the engine block, intake, exhaust, radiator, fuel tank, etc.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Fire simulation

baseTemp
name

number
type

tEnv
default

Initial temperature (°C) of the node.

Using “thermals” as the baseTemp will tie the node’s temperature to the engine temperature.

flashPoint
name

number
type

Temperature (°C) at which the node catches on fire.

In documentation this is often referred to as the auto-ignition temperature.

smokePoint
name

number
type

flashPoint
default

Temperature (°C) at which the node emits smoke.

burnRate
name

number
type

How quickly the node burns through its fuel (Actual burn rate also depends on

how much energy is left to burn and the current temperature of the node)

conductionRadius
name

number
type

0
default

Maximum distance (meters) that the node will transfer

heat to other nodes through conduction.

selfIgnitionCoef
name

number
type

0
default

How much energy from collisions heats up the node.

chemEnergy
name

number
type

0
default

How much energy is in the node (J).

specHeat
name

number
type

1
default

Specific heat of the node in J/kg/°C (Along with the node’s

weight, this affects how quickly the node heats up).

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Nodes

Advanced example

Example of a typical node section, which begins by initializing all the properties that will be used

for the following nodes.
{
 "nodes": [
 ["id", "posX", "posY", "posZ"],
 {"nodeWeight":1.3},
 {"frictionCoef":0.6},
 {"nodeMaterial":"|NM_PLASTIC"},
 {"collision":true},
 {"selfCollision":false},

 // refnode
 ["fr4", 0.00000, -0.0862, 0.08203],

 {"group":"base"},
 ["fr1sr", 0.05127, 0.32888, 0.11144],
 ["fr1sl",-0.05127, 0.32888, 0.11144],

 {"frictionCoef":0.7},
 ["fr5sr", 0.05127, -0.17883, 0.11917],
 ["fr5sl", -0.05127, -0.17883, 0.11917],
 ["fr6sr", 0.05819, -0.25368, 0.11144],
 ["fr6sl", -0.05819, -0.25368, 0.11144],
 {"group":""},

],
}

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams
The origin of BeamNG’s name – beams.

Beams are the spring-damper connections between nodes, forming the core structure of a vehicle.

They enable deformation and breaking as needed.

There are multiple types of beams for all sorts of purposes, which you can see in more detail in the

various examples. Standard beams act as simple springs with damping, with the ability to deform

and break if needed, and are used for most applications.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Required arguments
id1:
name

string
type

Name of the first node

Id2:
name

string
type

Name of the second node

Optional arguments – General

The Beams section has many optional arguments. We will divide them into categories, which will

be sorted from most to least frequently used. These are the most basic arguments, used

everywhere in Jbeam files, necessary for correct simulation.

beamType
name

string
type

NORMAL
default

Beam type determines its behavior on

compression and extension.

NORMAL - General use beams, don’t have any special properties, used in most structures.

SUPPORT - The second most used type of beams. These only resist forces in compression, not in

extension. With precompression, they start resisting forces when reaching the precompressed

length. They can automatically break when reaching a set length. Usually used when multiple parts

are linked together - they don’t serve as attachments for those parts, but as limiters, preventing the

nodes of one part to clip inside the surface of the other.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – General

HYDRO - Defined in a separate section but sharing all normal beam properties, hydros can

change length on demand, usually used for steering racks. They can also define the steering wheel

lock angle of the car.

ANISOTROPIC - They have separate beamSpring and beamDamp values for expansion than for

compression, can define transition zone between the two behavior variants, and can also

automatically break when exceeding a certain length ratio. Used to simulate structures that are

stiffer in expansion than in compression, such as tires (where they are automatically generated),

ropes or soft tops.

BOUNDED - More complicated than anisotropic beams, these can have different beamSpring and

beamDamp values not just for compression and extension, but also for low and high compression and

extension speed. The contraction and expansion can be defined as a ratio or metric range, and the

transition zone can be modified. They are computationally expensive to use and should usually

only be used in suspension components such as dampers and bump stops.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – General

LBEAM - Defined with three node IDs instead of two, they resist angle change between two beams

created between those nodes, rather than a distance between two nodes. They can provide high

lateral stiffness with low compression resistance. They are used for tires (where they are auto

generated) and leaf springs.

PRESSURED - Special beams used to simulate air cylinders. Their forces are inversely

proportional to their real time length. You can set the starting pressure in Pa or PSI, maximum

pressure above which the beam breaks, surface of the cylinder and its volume coefficient. Used in

tires (auto generated) and progressive air springs.

BROKEN - Broken beams stop resisting forces. You cannot set this type by typing it in Jbeam.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – General
beamSpring
name

number
type

4300000
default

Rigidity of the beam (N/m).

Force required to change the length of the beam by a set amount. Excessively high stiffness compared to node weight can

cause the beam to vibrate and cause instability issues.

A beam with the beamSpring value of 0 will not be shown in the console as a duplicate. This allows for adding extra damping

beams in the structure.

beamDamp
name

number
type

580
default

Damping of the beam (N/m/s).

Damping helps reduce oscillations over time. However, if the damping is too high relative to the node's weight, it can lead to

pulsing stress and instability in the structure.

beamStrength
name

number
type

FLT_MAX
default

Strength of the beam. (N).

How much force the beam can resist before breaking. A value of “FLT_MAX” will result in an unbreakable beam.

beamDeform
name

number
type

220000
default

How much force (N) is required to deform the

beam permanently.

A value of “FLT_MAX” will result in a beam that can’t be permanently deformed.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – Breakable

optional
name

boolean
type

false
default

Deactivates errors when one of the beam’s node is missing

This is used for cases where one of the nodes that make up the beam, is located in an optional component.

It will also hide warnings related to duplicate beams.

Used only on breakable beams (the ones with beamStrength other than “FLT_MAX”). These kind of

beams are used to simulate plastic or to attach various components of a vehicle together.

breakGroup
name

string
type

A beam gets automatically broken when another beam from the same breakGroup

breaks

breakGroupType
name

number
type

Sets breakgroup behavior

If set to 0, this beam will break others in the breakGroup. if set to 1, this beam will NOT break others in the breakGroup but will

be broken by the group.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – Deform Groups

Deform groups are used to trigger an action when a beam deforms. Most often used only for visual

glass/lights damage and powertrain damage.

deformGroup
name

string
type

Identifies which deform group this beam is part of.

Used to trigger flexbody deform groups. Is also used for damage simulation on some powertrain components.

A beam with a deformGroup will not be treated as a duplicate beam by the console.

If a beam has both a breakGroup and a deformGroup, breaking it will spawn glass or wood particles depending on the

nodeMaterial of both of its nodes. This is used for vehicle windows.

deformationTriggerRatio
name

number
type

Level of deformation above which the deformGroup is triggered.

Typical values are very small numbers under 0.1. If the beam is shortened or lengthened by more than that amount, the

deformGroup will be triggered.

The existence of this property on a beam will create a deform trigger for the beam, causing extra code to be executed

whenever any beam with this property is deformed. This can be performance intensive, so it should only be used where it’s

needed.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – Precompression

These arguments define a length change of the beam on spawn. They are most often used in

suspension components.

beamPrecompression
name

number
Type

1
default

The length the beam will become as soon as it spawns.

2.0 would be twice the length, 0.5 would be half the length.

precompressionRange
name

number
type

Beam length change on spawn in meters.

Overrides beamPrecompression.

A value of 0.2 would cause the beam to lengthen by 0.2 meters on spawn, while a value of -0.2 would cause the beam to

shorten by 0.2 meters on spawn.

beamPrecompressionTime
name

number
type

Time in seconds for precompressed beams to reach their requested length.

Helps avoid deformation on spawn from precompressed beams violently going to their desired length.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – Drivetrain and suspension

Used only on certain suspension components and other critical vehicle parts.

name
name

string
type

Name of the beam.

Used by some systems to identify the specific beam to use.

dampCutoffHz
name

number
type

Limits the vibration frequency (Hz) above which damping applies.

Only applies to normal, bounded, and l-beams. Used mostly with suspension components and other critical parts of the

jbeam to help run higher damping before instability kicks in. Expensive to run, should only be used where needed.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Optional arguments – Suspension sound

These arguments are used on beams that work the roles of struts or shock absorbers in a vehicle.

They should all be used together in line only on those beams.

soundFile
name

string
type

The FMOD event to play on beam compression.

The list of all usable event paths can be found in the World Editor: Window > Audio > SFX Previewer.

volumeFactor
name

number
Type

1
default

Sets the relationship between the beam compression and sound volume.

decayFactor
name

number
Type

10
default

Sets the envelope decay/release factors of the sound.

pitchFactor
name

number
Type

0
default

Impulse-based pitch bend factor.

maxStress
name

number
Type

35000
default

The beam stress value (N/m^2) treated as full compression by the sound

system.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Bounded Beams
Bounded beams are a type of beam that can vary their stiffness and damping based on their

length and velocity. They are mainly used for components like dampers and suspension limiters,

as they allow for advanced behaviors such as multi-stage damping and bump stops.

However, because they are more complex, bounded beams can impact performance due to the

increased computational cost. For this reason, their use should be kept to a minimum. In many

cases, precompressed support beams can be used as a simpler alternative.

Unlike regular beams, you can place multiple bounded beams between the same two nodes to

simulate different suspension elements, and the console will not report this as an error.

Required arguments

Same as generic beams.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Bounded Beams

Basic and advanced bound properties

Damping can be split into bound/rebound and slow/fast. Regular damping applies during

compression, while rebound damping works during expansion—useful for tuning weight

transfer and suspension return.

The bounding effect lets a beam transition to

a second set of stiffness and damping values

when stretched or compressed past a limit.

It's commonly used for bump stops, limit

straps, or to restrict movement. The transition

between normal and bound properties is

gradual, controlled by the boundZone

parameter.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Bounded Beams

Basic and advanced bound properties

Vanilla cars often use damping beams on suspension/steering

parts to prevent oscillations during grip loss, with little slow

damping and higher fast damping.

The resulting forces will always keep going up as the speed

increases, however the resulting damping force curves will change

if the values are progressive (in red), or digressive (in blue)

Fast damping is also split into bound and rebound, and it applies when

the beam extends or compresses faster than a set velocity (defined by

the beamDampVelocitySplit). On road and track cars, fast damping is

usually lower than slow damping to make the suspension softer over

harsh impacts like curbs or potholes, while slow damping still controls

weight transfer. On off-road vehicles, fast damping is often closer to

slow damping to better absorb large impacts and prevent bottoming

out.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Bounded Beams

Optional arguments – Main parameters
beamLongBound
name

number
type

1.0
default

How far the beam can expand before limit properties begin

to apply.

0.0 would mean that the limit properties begin to apply as soon as the beam expands.

0.5 would mean that the beam can expand to 150% of its spawned length before limit properties begin to apply.

1.0 would mean that the beam can expand to 200% of its spawned length before limit properties begin to apply.

beamShortBound
name

number
type

1.0
default

How short the beam can go before limit properties begin to

apply.

0.0 would mean that the limit properties begin to apply as soon as the beam contracts.

0.5 would mean that the beam can contract to 50% of its spawned length limit properties begin to apply.

1.0 would mean that the beam can contract its entire length before limit properties begin to apply.

boundZone: Distance (in meters) over which the transition from default to limit properties occurs after reaching a bound.

longBoundRange: Extension length (in meters) before limit properties apply (overrides beamLongBound).

shortBoundRange: Compression length (in meters) before limit properties apply (overrides beamShortBound).

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Bounded Beams

beamDampRebound
name

number
type

beamDamp
default

The damping value applied only when the beam is

expanding(N/m/s).

Optional arguments – Limit stiffness and damping

beamLimitSpring: Spring stiffness (N/m) applied when a bound is reached.

beamLimitDamp: Damping (N·s/m) applied during compression after reaching a bound.

beamLimitDampRebound: Damping (N·s/m) applied during extension after reaching a bound.

Optional arguments – Advanced damping

beamDampFast: Damping applied when the beam’s movement speed exceeds beamDampVelocitySplit.

beamDampReboundFast: Fast rebound damping, active when extension speed exceeds the velocity split.

beamDampVelocitySplit: Speed threshold (m/s) at which beamDampFast and beamDampReboundFast take effect.

beamDampVelocitySplitRebound: Rebound-specific velocity split, overrides beamDampVelocitySplit.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Support Beams

Support beams are beams that only resist to forces in compression.

When used with a precompression argument, they will only start resisting forces when being

compressed smaller than their precompressed length.

Support beams are mostly used as limiters, to prevent structures from reversing themselves or

getting stuck where they shouldn’t.

Optional arguments

Required arguments

Same as generic beams.

beamLongBound
name

number
type

1.0default When this bound is exceeded, the beam

automatically breaks.

0.0 would mean the beam breaks if it expands at all. 0.5 would mean the beam breaks after expanding to 150% of its

spawned length. 1.0 would mean the beam breaks after expanding to 200% of its spawned length.

Support beams also support the same optional arguments as standard beams.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Pressured Beams

Pressured beams simulate progressive air springs that become stiffer as they compress. They are

mainly used in tire sidewalls and specialized suspension setups.

Pressured beams inherit all optional parameters from standard beams.

Required arguments

Same as generic beams. The total force during extension = beamSpring +

pressure-generated force. This prevents overextension and adds stability.

Optional arguments

pressure: Initial pressure in Pascals of the virtual air cylinder. Use this or pressurePSI, not both.

pressurePSI: Initial pressure in PSI of the virtual air cylinder. Use this or pressure, not both.

surface: Surface area (in m²) of the virtual air piston. A larger surface creates more force for the same pressure. Default: 1.0.

volumeCoef: Ratio between beam length and the virtual cylinder length (1.0: same length; <1: pressure increases more

gradually; >1: pressure increases more aggressively; 0: pressure stays constant and no pressure buildup).

maxPressure: Maximum pressure in Pascals before the beam breaks. Prevents instability by capping pressure as the beam

compresses.

maxPressurePSI: Same as maxPressure but in PSI. Use one or the other, not both.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Anisotropic Beams

Anisotropic beams have different spring and damping values

depending on whether they are compressed or expanded beyond

their original length. They are commonly used in tire sidewalls and

rope-like elements, where you want compression flexibility but

restrict overextension.

Required arguments

Same as generic beams.

The standard spring and damp arguments will be used when the beam is compressed.

Optional arguments

springExpansion: Spring stiffness (in N/m) when the beam is stretched beyond its spawned length. If not set, defaults to the

normal beamSpring.

dampExpansion: Damping (in N·s/m) when expanded. If not set, defaults to beamDamp.

beamLongBound: Defines how far a beam can stretch before breaking, relative to its original length.

transitionZone: Defines a gradual ramp between standard and expansion values (instead of switching instantly).Expressed

as a fraction of beam length.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

L-Beams

L-Beams are beams that are used to resist angle change between two beams. They are defined

using three nodes, with the L-Beam being created between nodes 1 and 2. There must already be

beams defined between nodes 1 and 3 and node 2 and 3.

L-Beams will apply a force only when the angle between the two standard beams change, and not if

only the length of the l-beam changes.

Required arguments

Same as generic beams.

id3
name

string
type

Name of the third node.

Any change in angle between beams [id1,id3] and [id2,id3] is then resisted by the L-Beam from [id1,id2].
["node1","node2", {"id3:":"node3"}],

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Beams

Advanced example
{
 "beams": [
 ["id1:", "id2:"],

 // Beam telaio
 {"beamSpring":400000,"beamDamp":100},
 {"beamDeform":"FLT_MAX","beamStrength":"FLT_MAX"},

 ["w2l","w4l"],
 ["w2l","w2r"],

 // Molle-Ammortizzatori Anteriore
 {"beamSpring": "$spring_F", "beamDamp": "$damp_bump_F"},
 {"beamDeform": "FLT_MAX", "beamStrength": "FLT_MAX"},
 {"beamPrecompression": "$rideheight_F", "beamType": "|BOUNDED", "beamLongBound": 1.0, "beamShortBound": 1.0},

 ["s1r", "fw5r", {"beamDampRebound": "$damp_rebound_F", "soundFile": "art/sound/spring_compress2.ogg",

"volumeFactor": 1.8, "decayMode": 1, "decayFactor": 8, "pitchFactor": 20, "maxStress": 2000}],
 ["s1r", "fw3r", {"beamDampRebound": "$damp_rebound_F", "soundFile": "art/sound/spring_compress2.ogg",

"volumeFactor": 1.8, "decayMode": 1, "decayFactor": 8, "pitchFactor": 20, "maxStress": 2000}],

 {"beamSpring": 500000, "beamDamp": 1000},
 {"beamDeform": "FLT_MAX", "beamStrength": "FLT_MAX"},
 {"beamPrecompression": 1.0, "beamType": "|BOUNDED", "beamLongBound": 1.2, "beamShortBound": 0.85},
 ["fr1r", "fw4l"],
 ["fr2r", "fw4l"],

],
 [...]
}

Example of typical beam

sections, which begin by

initializing all the

properties that will be

used for the following

beams.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Triangles
Triangles, also known as “coltris”, are surfaces that fill-in the space between nodes. They are

essential to allow for collisions between vehicles and are also used to define the aerodynamic

properties of objects.

Triangles are defined by three nodes, chosen in a counterclockwise order.

Triangles enable collisions between jbeamed objects, colliding only with nodes—not with other

triangles or static world elements. In debug view, the front side is shown in green and the rear in

purple; exposing the front is preferred to prevent phasing during impacts. To flip a triangle, simply

swap any two of its nodes.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Triangles

Regarding aerodynamics, BeamNG calculates drag on all triangles based purely on the speed of

the airflow, the surface area and drag properties of the triangles. Drag and lift forces are then

applied to the adjacent nodes.

Triangles do not influence each other, so a triangle at the back of the vehicle still generates full

drag. Due to this, you may need to fine-tune the drag coefficient of different components

depending on their exposure to airflow. The system also allows you to add surfaces to simulate

ground effects or adjust the lift distribution on the vehicle. Lift is simulated based on the triangle's

angle of attack relative to the airflow. An upward-tilted triangle generates lift, while a downward-

tilted one creates downforce. A larger angle generates more lift, but beyond the stalling angle, lift

decreases as the angle increases.

Aerodynamics

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Triangles

Required arguments
id1:
Name

string
type

The id of the first node that defines the triangle

id2:
name

string
type

The id of the second node that defines the triangle

id3:
name

string
type

The id of the third node that defines the triangle

Optional arguments
dragCoef
name

number
type

100
default

Drag coefficient of the triangle as a percentage

of a flat plate of the same size.

Typical values are around 10 for most exposed body panels.

liftCoef
name

number
type

dragCoef
default

Lift coefficient of the triangle as a percentage of

a flat plate of the same size.

Values between 80 and 120 are commonly used for spoilers.

Quads place two triangles simultaneously, sharing all triangle properties. They require an id4:

attribute and are defined in the same way. They are mainly used for perfectly rectangular surfaces

but can make Jbeam files harder to understand when combined with triangles.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Hydros
Hydros are beams whose length can be varied on demand. They’re used for many things,

including steering racks, hydraulic cylinders, and actuators for doors.

Their length is defined using electrics (more on this later).

A factor of 1 makes a command of 1 double the beam’s length, while -0.5 halves it. Smaller factors

reduce the amount of length change.

Required arguments

Optional arguments

id1:
name

string
type

Name of the first node

id2:
name

string
type

Name of the second node

factor
name

number
type

Extension/compression limit as a proportion of the hydro’s length.

A value of 0.5 will result in the hydro halving in length at when the input is -1, and an extension to 1.5 times the hydro’s initial

length when the input is 1.

Negative values will cause the hydro to contract instead of expanding with positive input values and vice versa.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Hydros

Optional arguments

steeringWheelLock
name

number
type

Defines how much steering wheel angle this hydro will match to.

This is center to lock angle. Standard steering will be around 450~500, with older cars and trucks having slightly more

angle, and racing cars having less angle.

This drives the “steering” electric used for steering wheel props.

inRate
name

number
type

2
default

How fast the hydro contracts.

outRate
name

number
type

inRate
default

How fast the hydro expands.

lockDegrees
name

number
type

Sets the maximum steering angle (in degrees) that the hydro beam can achieve

when fully actuated.

Example
{
 "Buggy_Sterzatura": {
 "slotType": "Buggy_Sterzatura",
 "hydros": [
 ["id1:", "id2:"],
 ["fr2sr", "fw5r", {"factor":-0.08, "steeringWheelLock": 280, "lockDegrees": 25, "inRate": 1, "outRate": 2}],
 ["fr2sl", "fw5l", {"factor": 0.08, "steeringWheelLock": 280, "lockDegrees": 25, "inRate": 1, "outRate": 2}]
]
 }

}

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Information
The information section contains data that is to be shown to the user in the User Interface (UI).

The section is a simple dictionary with a few simple optional arguments:

authors
name

string
type

Name of the author(s).

Multiple authors can be separated by comma. “BeamNG” is reserved for official vehicles and should not be used.

name
name

string
type

Visual name of the part.

Data in jbeam on the left, how it shows in-game on the right:

Part

Section

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Slots
The slot and slotType sections are used to define where a component fits within the vehicle’s parts

tree. Each part also has a “slotType”, which identifies where in the vehicle it fits, and allowing

multiple parts to act as alternatives to each other. One unique slot type is “main”, which refers to

the “root”" component of the vehicle. The slots section defines which components are the

“children” of that component based on their slotType.

Required arguments - slotType
slotType
name

string/table
type

The slot type, or list of slot types, of the component.

In almost all cases, this will be a string identical to the type of a slot in the parent component. However, it can also be a table

specifying multiple slot types the part fits in.

Required arguments - slots
type
name

string
type

The internal name of the slot.

The parts in that slot should have this value as their slot type.

default
name

string
type

The component that gets loaded by default if no part is defined in the car’s config

file.

description
name

string
type

type
default

The name of the slot in the part selector.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Slots

Optional arguments

How slots appear in game

coreSlot
name

boolean
type

If enabled, the choice to have the part empty is removed from the part

selector/garage.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Flexbodies
Flexbodies are visual models that deform based on node movement and are assigned to specific

nodes using nodegroups. The game will calculate deformation by mapping every vertex to the

nearby nodes, and moving them accordingly with the movement of those nodes.

All the meshes should be in one or multiple .dae files either in your car’s folder or the common

folder.

An additional feature are deform groups: they trigger material changes when certain beams

deform, often used for lights and windows.

Required arguments

nonFlexMaterials is a deprecated legacy feature that is not used or usable anymore.

"flexbodies": [
 ["mesh", "[group]:", "nonFlexMaterials"],
 ["my_mesh", ["my_group"]],
],

mesh
name

string
type

Defines the name of the mesh.

This is the same name as in Blender.

[group]:
name

string
type

Defines the id of the node group this mesh is linked to.

A mesh can be linked to multiple node groups.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Flexbodies

Optional arguments

 "flexbodies": [
 ["mesh", "[group]:", "nonFlexMaterials"],

 ["anteriore", ["telaio"]],
 ["giunto_bracci_anteriore3", ["telaio"]],
 ["giunto_molle_anteriore", ["telaio"]],
 ["base_sensori1", ["telaio"]],
 ["base_sensori2", ["telaio"]],
 ["base_sensori3", ["telaio"]],
 ["base_sensori4", ["telaio"]],
 ["base_sensori5", ["telaio"]],
 ["base_sensori6", ["telaio"]],
 ["base_sensori7", ["telaio"]],
 ["base_sensori8", ["telaio"]],
 ["base_sensori9", ["telaio"]],
 ["giunto_molle_posteriore", ["telaio"]],
 ["presa_alettone", ["telaio"]],
 ["alettone_posteriore", ["alettone"]],
],

deformGroup
name

string
type

Defines the deform group that will be used for this mesh.

This name should match the deform group defined in the beams section.

Example

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Camera
There are three different sections of cameras within jbeam. The cameraExternal, referring to the

orbit camera, cameraChase referring to the chase camera, and cameraInternal which is used for the

dash, hood and other custom cameras.

Normally, cameraExternal and cameraChase should both be defined within the same component as

the refnodes (usually the frame or body of a vehicle depending on its construction).

The external camera refers to the orbit camera. It is defined using the refnode as the center point

and can be rotated freely by the player.

distance
name

number
type

How far the camera is from the vehicle (m).

Required arguments - cameraExternal

distanceMin
name

number
type

How close from the vehicle the camera can get (m).

fov
name

number
type

Default field of view of the camera (degrees).

offset
name

dictionary
type

{“x”:0, “y”:0, “z”:0}
default

The offset of the camera’s focus point (m).

If set at 0,0,0, the camera’s focus point will be the refnode.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Camera

The chase camera has a mostly fixed rotation behind the car. It is defined using the refnode as the

center point.

distance
name

number
type

How far the camera is from the vehicle (m).

Required arguments - cameraChase

distanceMin
name

number
type

How close from the vehicle the camera can get (m).

fov
name

number
type

Default field of view of the camera (degrees).

offset
name

dictionary
type

{“x”:0, “y”:0, “z”:0}
default

The offset of the camera’s focus point (m).

If set at 0,0,0, the camera’s focus point will be the refnode.

defaultRotation
name

dictionary
type

{“x”:0, “y”:0, “z”:0}
default

The rotation of the chase camera (degrees).

Example "cameraChase":{
 "distance":2.0,
 "distanceMin":0.5,
 "defaultRotation":{"x":0,"y":-10,"z":0},
 "offset":{"x":0, "y":0.00, "z":0.35},
 "fov":65,
},

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Props
Props are meshes that do not affect physics themselves but can be animated. Attached to the

physics skeleton via nodes. They are used for decorative or mechanical elements like driveshafts.

Props follow node movement, can rotate or move based on defined parameters and react to

physics events through breakGroups and deformGroups, allowing them to visually respond to damage.

Required arguments

func: The name of a variable or function (usually from the vehicle's Lua code or predefined animations) that controls the

prop.

mesh: The name of the mesh to use for this prop.

idRef: The main node the prop is attached to (anchor point)..

idX:,idY: Nodes used to define the orientation of the prop in the X and Y directions.

rotation: Axis of rotation (e.g. {x:0, y:1, z:0} means it rotates around the Y axis).

translation: Optional movement of the prop in 3D space (usually {x:0, y:0, z:0}).

Optional arguments

baseRotation: The default rotation of the prop (in degrees) before any animation is applied.

min / max: Limits of movement (e.g. angle for rotation).

offset: Starting value for the animation.

multiplier: Scales the value received from func.

optional: Disables errors when one or more nodes of the prop were not found.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Props

Example

"props": [
 ["func","mesh","idRef:","idX:","idY:","baseRotation","rotation","translation","min","max","offset","multiplier"],

 ["driveshaft_A","trasmissione_A","fr4r","fr4","fr3",{"x":90, "y":0, "z":0},{"x":0, "y":1, "z":0},{"x":0, "y":0,"z":0},
 -360, 360, 0, 1,{"breakGroup":"driveshaft_A","deformGroup":"driveshaft_A","optional":true}],

],

back

Make sure to set the origin of the prop meshes to the geometry origin in Blender, so BeamNG can

properly handle their rotation and translation.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels
The pressureWheel is the primary method for creating wheels in BeamNG. It is a

real time physical tire model made from nodes, beams, and triangles.

The pressure wheel system generates a wheel automatically using two nodes as

an axle. The wheel’s position and orientation are based on the position and

direction of these nodes.

Due to the high number of parameters, it's recommended to copy existing

pressure wheel setups from official JBeam files and adjust only what's needed.

Structure of the wheels

Wheels consist of two main parts:

- The hub connects to the axle using rigid beams and represents the rim's outer structure.

- The tire surrounds the hub with its own set of nodes and is connected to the hub via multiple

beams. Together, they form a pressure group.

The beams between the hub and the axle are fairly rigid standard beams.

The tire nodes are linked to the hub node and each other with a mix of beams and allow for tread

deformation and sidewall flex.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels

Structure of the wheels

The radial beams are the main weight bearing nodes on the tire. They are generated as

anisotropic beams, allowing them to be quite soft in compression, to simulate the squishiness of

tires, while still being strong in extension, keeping the tires from expanding at higher speeds.

Reinforcement beams provide lateral stiffness by linking tire nodes across the wheel, allowing

controlled sidewall flex during cornering.

Tire friction parameters – Friction velocity

Each ground surface in BeamNG has a static and sliding friction parameter, along with a

stribekVelocity which affects the transition between static and sliding friction. The tire’s various

friction parameters are defined as multipliers of those various friction parameters.

frictionCoef and slidingFrictionCoef are friction multipliers when the tire is rolling and sliding, with

the second that is lower than the first one. To simulate the gradual transition from static to sliding

friction in flexible rubber tires, the Stribeck curve is used. The stribeckVelocity parameter controls

how quickly this transition happens—higher values make it more gradual. The stribeckExponent

smooths the curve’s shape, making it more bell-like.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels

Tire friction parameters – Tire load

Unlike standard friction models where friction is directly proportional to load, tire friction behaves

differently due to their flexibility. The frictionCoefficient is slightly higher at lighter loads, allowing

for a more progressive response during braking and cornering.

Three parameters control tire load sensitivity: noLoadCoef (typically just above 1) defines friction at

zero load, fullLoadCoef (usually just below 1) defines friction at high load, loadSensitivitySlope

controls how quickly friction drops from noLoadCoef to fullLoadCoef as load increases.

As the force is calculated per node, the normal force used is the force on each individual node, not

the force on the wheel itself.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels
Required arguments

name
name

string
type

The name of the wheel.

The standard naming for 4 wheeled vehicles is FR, FL, RR and RL.

This will be used when referring to the wheel in other sections, like the powertrain.

group
name

string
type

The nodegroup of the tire nodes.

Works in a similar way to standard node groups.

node1:
name

string
type

The first axle node.

The standard naming scheme for 4 wheeled vehicles is fw1rr, fw1ll, rw1rr and rw1ll.

hubGroup
name

string
type

The nodegroup of the hub nodes.

Works in a similar way to standard node groups.

node2:
name

string
type

The second axle node.

The standard naming scheme for 4 wheeled vehicles is fw1r, fw1l, rw1r, and rw1l.

"pressureWheels": [
 ["name","hubGroup","group","node1:","node2:","nodeS","nodeArm:","wheelDir"],
 [...]
]

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels
Required arguments

nodeS
name

string
Type

Name of the stabilizing node.

Each node from the hub will attach to this node with a beam. It’s mostly legacy and not generally used. Putting 9999 in will

disable it.

wheelDir
name

string
type

The direction that drive torque is applied.

The correct value (1 or -1) depends on which order you define the axle nodes.

nodeArm
name

string
type

Along with nodeCoupling, this node will be used to apply braking counter torque

to the suspension and body.

nodeArm should should located roughly where the brake caliper should be. Keep in mind that this node needs to be far

enough from the nodeCoupling, and heavy enough. A node that is too close, or too light for the set braking torque can cause

instability in the braking system, resulting in poor braking performance and brakes that overheat when the parking brake is

applied. For a typical car, they should be at least 2kg. For a large truck, as much as 5-10kg.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels

Advanced example

The pressureWheels structure is the most complex and parameter-rich. For this reason, in this section

we prefer to show explanations only for the parameters set in the example.

 "pressureWheels": [
 ["name","hubGroup","group","node1:","node2:","nodeS","nodeArm:","wheelDir"],
 {"enableTireSideSupportBeams":true}, // Enables additional side support beams inside the tire to increase rigidity and prevent

deformation

 //general settings
 {"radius":0.1000}, // Radius of the tire nodes
 {"hubRadius":0.0515}, // Radius of the rim
 {"wheelOffset":-0.01}, // Offset from the original position (Left/right)
 {"hubWidth":0.04}, // Width of the rim
 {"tireWidth":0.0752}, // Width of the tire
 {"numRays":12}, // The amount of nodes to make the circle, more may result in smoother driving, but at the cost of performance,

weight & stability

 //hub options
 {"hubBeamSpring":1200000, "hubBeamDamp":125}, // Spring and damping values for the beams connecting the hub nodes
 {"beamSpring":1200000, "beamDamp":125}, // General spring and damping for the internal wheel structure
 {"hubBeamDeform":"FLT_MAX", "hubBeamStrength":"FLT_MAX"}, // Hub beams won't deform or break (maximum values)
 {"beamDeform":"FLT_MAX","beamStrength":"FLT_MAX"}, // Beams are indestructible (ideal for debugging or rigid setups)
 {"hubNodeWeight":0.20}, // Weight of the rim nodes, total rim weight = numRays * nodeWeight * 2
 {"hubNodeMaterial":"|NM_PLASTIC"}, // Material used for the hub (influences physical properties like friction and deformation)
 {"hubFrictionCoef":0.2}, // Friction of the hub nodes against other objects

[...]

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels

[...]
 //tire options
 {"wheelTreadBeamSpring":180000,"wheelTreadBeamDamp":50,"wheelTreadBeamDeform":"FLT_MAX","wheelTreadBeamStrength":10000000}, //

Spring and damping values for beams across the tread (edge to edge of the tire)
 {"wheelPeripheryBeamSpring":180000,"wheelPeripheryBeamDamp":40,"wheelPeripheryBeamDeform":"FLT_MAX","wheelPeripheryBeamStrength":100

00000}, // Spring/damp for peripheral beams connecting the tire circumference
 {"springExpansion":180000, "dampExpansion":18}, // Expansion springs/damping pushing the tire radially outward
 {"nodeWeight":0.1}, // Weight of tire nodes
 {"nodeMaterial":"|NM_RUBBER"}, // Rubber material for tire behavior and grip
 {"frictionCoef":1.3}, // Tire friction for each node, increasing will add more grip to your vehicle

 //Pressure
 {"pressurePSI":10}, // Tire pressure in PSI; defines the internal "inflated" force pushing the nodes outward
 {"maxPressurePSI":1500}, // Maximum pressure allowed before the tire explodes
 {"reinforcementPressurePSI":23}, // PSI above which reinforcement beams activate to maintain shape and avoid deformation
 {"pressureSpring":360100}, // Internal spring force that simulates air pressure in the tire
 {"reinforcementPressureSpring":2044000}, // Spring force for reinforcement beams that activate above reinforcement PSI
 {"pressureDamp":50}, // Damping effect for internal air pressure simulation
 {"reinforcementPressureDamp":53}, // Damping for reinforcement pressure beams

[...]

Advanced example

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Pressure Wheels

[...]
 //Brake
 {"brakeTorque":10}, // Braking torque applied to this wheel
 {"parkingTorque":0}, // Torque applied when the parking brake is active
 {"enableBrakeThermals":false}, // Disables heat simulation for brakes
 {"brakeDiameter":false}, // Placeholder for brake diameter (not active)
 {"brakeMass":false}, // Placeholder for brake mass (not active)
 {"brakeType":false}, // Placeholder for brake type (not active)
 {"rotorMaterial":false}, // Placeholder for rotor material (not active)
 {"brakeVentingCoef":false}, // Placeholder for brake venting coefficient (not active)

 //front
 {"propulsed":0}, // Indicates if the wheel is driven by the engine (0 = not powered)
 {"selfCollision":false}, // Wheel nodes don't collide with each other (common for front wheels)
 {"collision":true}, // Enables collision with external objects
 {"axleBeams":["axle_AD"]}, // Beam(s) that simulate the axle for this wheel
 ["AD", "ruota_AD", "", "fw1rr", "fw1r", 9999, "fw3r", 1], // Actual wheel definition: name, group, node references, rotation

direction

 {"axleBeams":["axle_AS"]}, // Axle beam for the second front wheel
 ["AS", "ruota_AS", "", "fw1ll", "fw1l", 9999, "fw3l",-1], // Second front wheel setup

 {"axleBeams":[]}, // Clears axle beams for following wheels (if any)
 {"enableABS":false}, // Disables ABS simulation for this wheel
 {"selfCollision":true} // Enables self-collision again for following wheels or parts

],

Advanced example

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Variables
Variables are used for all the settings that you’d like the user to have

access to in the “Tuning” setting.

Variables can either be used by themselves, or as part of a function. They

can be used pretty much anywhere in the jbeam that uses a number as it’s

entry value.

"variables": [
["name", "type", "unit", "category", "default", "min", "max", "title", "description"],
[...],

]

Required arguments

name
name

string
type

The internal name of the variable, that will be used when referring to your

variable in the rest of your jbeam (the $ as first character is usually used).

type
name

string
type

The type of variable("range" is the only supported type).

unit
name

string
type

The units that will be shown in the tuning menu.

Leaving this blank will result in the slider being from 0% to 100% and won’t show the min and max values in the tuning

menu.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Variables

Required arguments

default
Name

number
type

The default value of the variable.

min
name

number
type

The minimum value of the variable.

category
name

string
type

The category under which the variable will appear in the tuning menu.

This can be anything you want. When loading the car, the game will take all variables with the same category and group

them together.

max
name

number
type

The maximum value of the variable.

title
name

number
type

The name of the variable that will be shown in the tuning screen.

description
name

string
type

A description that will be shown if the user hovers his mouse above the variable.

The editable variable is identified by the $ symbol in front of its name, and once defined this way, it

can be referenced in the scripts using the same name.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Variables

Optional arguments
subCategory
name

string
type

The sub-category under which the variable will appear in the tuning menu.

This can be anything you want. When loading the car, the game will take all variables with the same category and sub-

category and group them together. This is often used to split Front and Rear variables.

stepDis
name

number
type

The size of the steps on the slider.

Leaving the Unit argument blank will result in the step being 1% which cannot be changed here.

"variables": [
 ["name", "type", "unit", "category", "default", "min", "max", "title", "description"]
 ["$rideheight_R", "range", "", "Sospensione", 1.10, 0.98, 1.5, "Altezza Sospensione", "Aumenta o diminuisci l'altezza delle

sospensioni", {"stepDis":0.05,"subCategory":"Posteriore"}]
 ["$spring_R","range", "N/m", "Sospensione", 10000, 1000, 30000, "Rapporto Rigidita", "Rigidita sospensione", {"stepDis":500,

"subCategory":"Posteriore"}]
 ["$damp_bump_R", "range", "N/m/s", "Sospensione", 1300, 10, 3000, "Smorzamento in compressione", "Rapporto di compressione

lenta", {"stepDis":100, "subCategory":"Posteriore"}]
 ["$damp_rebound_R", "range", "N/m/s", "Sospensione", 1300, 10, 3000, "Smorzamento in estensione", "Rapporto di estensione

lenta", {"stepDis":100, "subCategory":"Posteriore"}]
],

Advanced example

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Refnodes
Refnodes are fundamental and are used to define the

orientation and position of the car, as well as the position of the

cameras. They consist in a set of 4 nodes that define a coordinate

system, along with 2 nodes that define the front of the vehicle.

A single set of refnodes must be present on the vehicle at all

times, meaning this should be part of your chassis or body

jbeam. A vehicle with no refnodes will fail to spawn.

While refnodes do not need to be precisely centered in the vehicle, all refnodes (excluding the

corner nodes) need to be perfectly aligned with each other in their respective direction,

otherwise you might experience camera and/or spawning issues. You might need to do some

adjustments to your jbeam for this to be possible, and in some cases the addition of nodes that

serve solely as refNodes might be required.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Refnodes

"refNodes":[
["ref:", "back:", "left:", "up:", "leftCorner:", "rightCorner:"]
[...],

],

Required arguments

ref:
name

string
type

A node near the center and lowest point of the vehicle body.

This node doesn’t need to be in the 0,0,0 position but should be close to it.

back:
name

string
type

A node directly behind the ref node (Y axis).

left:
name

string
type

A node directly left of the ref node (X axis).

up:
name

string
type

A node directly above the ref node (Z axis).

leftCorner:
name

string
type

A node at the front left corner of the vehicle.

Used to trigger checkpoints.

rightCorner:
name

string
type

A node at the front right corner of the vehicle.

Used to trigger checkpoints.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Controller
Controllers are used to simulate various special functions of a vehicle using lua. It includes things

like digital gauges, drive modes, lightbars, stability control, etc.

Every vehicle needs at least one main controller, with the main options being dummy or

vehicleController.

Vanilla controllers can be found inside “\lua\vehicle\controller” in the game’s install folder.

"controller": [//defined in the main jbeam of the vehicle
 ["fileName"],
 ["vehicleController", {}],
],

Vehicle Controller

The vehicle controller is the main controller for any powered vehicle in BeamNG. It manages the

powertrain controls and interfaces with the different shift logic controllers for the various

transmission types. It is the main source of electrics data for engine and transmission information.

The vehicleController in our case is used to control the behavior of the vehicle’s engine.

The way these sections are used will be covered in the second part.

"vehicleController": { //defined in the engine jbeam file
 "shiftLogicName": "electricMotor",
 "motorNames": ["engine"],
 "topSpeedLimitReverse": 15,
 "defaultRegen": 0.0,
 "brakeRegenCoef": 0.0,

},

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Energy storage
Energy storage is used to identify a tank of fuel, a set of batteries, or a tank of nitrous.

"energyStorage": [
 ["type", "name"],
 ["electricBattery", "mainBattery"]

],
"mainBattery": {
 "batteryCapacity": 10,
 "startingCapacity": "$fuel",

},

Example

Required arguments
type
name

string
type

The type of energy stored.

The available options are fuelTank, n2oTank and electricBattery. Each of those has unique parameters.

name
name

string
type

The name of the energy storage.

In case of a vehicle with multiple fuel tanks, each name must be unique.

batteryCapacity
name

number
type

0
default

Battery capacity at full charge (kWh).

startingCapacity
name

number
type

capacity
default

Initial charge of the battery.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain
A powertrain is the system of parts that make a vehicle move, including the engine, transmission,

driveshaft, axles, differentials and wheels.

Overview of customizable powertrain components

Engine Types:

• Internal Combustion Engine (ICE) –

Traditional engine types powered by

fuel (gasoline, diesel, etc.).

• Electric Motor – Uses electricity

instead of fuel, offering instant torque

and regenerative braking.

• Hybrid Powertrain – A combination of

an ICE and an electric motor, balancing

efficiency and power.

• Turbine Engine – A high-power engine

often used in experimental or jet-

powered vehicles.

Transmission Types:

• Manual Transmission (MT) – Driver-controlled

gearbox with a clutch.

• Automatic Transmission (AT) – Gear shifts are

controlled automatically.

• Continuously Variable Transmission (CVT) –

Uses belts and pulleys to offer smooth, stepless

gear changes.

• Dual-Clutch Transmission (DCT) – A faster-

shifting automatic transmission with two clutches.

• Sequential Transmission – Found in race cars;

allows clutchless up/down shifting.

• Electric Direct Drive – Used in electric vehicles,

where no traditional transmission is needed.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain

Overview of customizable powertrain components

Differentials:

• Open Differential – Standard

type, distributing power evenly

but allowing independent wheel

speeds.

• Limited-Slip Differential (LSD) –

Reduces wheel slip by

redistributing torque between

wheels.

• Locking Differential – Forces

both wheels on an axle to rotate at

the same speed for better off-road

traction.

• Torque-Vectoring Differential –

Actively adjusts power to different

wheels for better handling.

Transfer Cases (for AWD/4WD Vehicles):

• Part-Time 4WD – Allows switching between 2WD and

4WD manually.

• Full-Time AWD – Power is always distributed to all four

wheels.

• Selectable Transfer Case – Lets the driver switch

between different drive modes (2WD, AWD, 4WD

High/Low)

Driveshafts & Halfshafts:

• Driveshaft – Transfers power from the

engine/transmission to the wheels.

• Halfshaft (Axles) – Connects differentials to the wheels

and transmits power.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain

Overview of customizable powertrain components

Clutches & Torque Converters:

• Clutch – Used in manual transmissions to

engage/disengage power from the engine to

the gearbox.

• Torque Reactor – The point in the drivetrain

where torque reaction forces are balanced:

parts before it twist one way and parts after

it twist the other way. Essential for realistic

drivetrain behavior in BeamNG.

Final Drive & Gearing:

• Final Drive Ratio – Determines how engine

power is translated into wheel rotation speed

and torque.

• Gear Ratios – Affect acceleration, top speed,

and fuel efficiency.

To demonstrate how to customize a powertrain, we will use the vehicle we created as an example.

back

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain

Required arguments
"powertrain": [

["type", "name", "inputName", "inputIndex"],
[...]

],

type
name

dictionary
type

The kind of component (electricMotor, combustionEngine, differential, clutch,

gearbox, etc.).

name
name

dictionary
type

A unique name for this component.

inputName
name

dictionary
type

The name of the element providing input to this component.

dummy means no mechanical input (it's an independent, primary source).

inputIndex
name

number
type

Used when the input component has multiple outputs (like a differential).

For dummy this is always 0.

back

Engine definition

This section defines all the physical and logical behavior of the motor. It must be located inside the

vehicle’s motor jbeam file.

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain

Required arguments – Torque

maxRPM: This is the maximum RPM the motor can spin at. Above this limit, it will protect itself and cut

power.

inertia: Rotational inertia of the motor — the higher the value, the more "sluggish" the motor feels

when accelerating or decelerating. Lower = quicker response.

friction: Static internal resistance of the motor (torque that opposes movement).

dynamicFriction: Resistance during rotation.

electricalEfficiency: How efficient the motor is.

regenThrottle: At what throttle position regen starts.

back

rpm
name

number
type

Engine revolutions per minute.

torque
name

number
type

Torque (in Nm) produced at that rpm.

"torque": [
 ["rpm", "torque"],
 [...],
]

Optional arguments

Davide Serpi – Stefano Cimmino PSD 2025

2. Modding – JBeam File Sections – Powertrain

maxRegenTorque: Maximum torque the motor can absorb when regenerating.

electricsThrottleFactorName: Name of a parameter in the electrics system that scales available

throttle (like a limiter).

energyStorage: List of batteries the motor draws power from.

waterDamage: Which node groups cause engine damage when submerged in water.

engineBlock: Node group representing the physical engine body.

breakTriggerBeam: When this beam breaks, the engine is considered damaged or dead.

uiName: What the engine is called in the user interface.

back

Optional arguments

Davide Serpi – Stefano Cimmino PSD 2025

To better understand modding, we completed the official Autobello tutorial from the official

repository:

We highly recommend completing the Autobello tutorial before starting any vehicle modding.

It provides a solid understanding of how Blender and BeamNG work together, and how the node

and beam physics system functions.

3. Tutorials

Autobello Tutorial

Part 2: Vehicle creation

Davide Serpi – Stefano Cimmino PSD 2025

Inside the mod "Desert Buggy V3" you will see these files:

1. Jbeam scripts

• Buggy.jbeam

• Buggy_Telaio.jbeam.jbeam

• Buggy_Sospensione_A.jbeam

• Buggy_Sospensione_P.jbeam

• Buggy_Motore.jbeam

• Buggy_Batteria.jbeam

• Buggy_Ruote_A.jbeam

• Buggy_Ruote_P.jbeam

2. Informations script

• Info_Desert_Buggy.json

• Desert_Buggy_Race.pc

• Desert_Buggy_Offset.pc

• Info.json

• main.materias.json

• Name.cs

3. Vehicle design

• Default.jpg

• Desert_Buggy_Race.png

• Desert_Buggy_Offset.png

• Buggy.dae

Part 2: Vehicle creation

Davide Serpi – Stefano Cimmino PSD 2025

In the following slides, we will explain the steps needed to understand the purpose of the

files in the mod and how to create them from scratch. The process will be divided into the

following phases:

1. Creating the 3D Model (.dae file) – Blender Phase

o Vehicle creation in Blender

o Material and UV map assignment in Blender

o Creation and use of the main.material file

2. Creating the JBeam Scripts – JBeam Phase

o Hierarchy of the JBeam structure

o Definition of beams and nodes

o Definition of flexbodies and refnodes

o Powertrain structure and vehicleController

o Definition of wheels and hydros

3. Defining the Package Structure – Configurations Phase

o Packages and Vehicles

o Info.json, .pc and png files

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

Before opening Blender, it is important to take a preparatory

step:

• Obtain 1:1 scale measurements

If you're recreating a well-known vehicle, you can easily find its

dimensions and specifications online. However, whenever

possible, you can also take the measurements yourself, as we

did.

Take a lot of photos of the vehicle and save the

measurements on a pdf files are also a good practice, but to

create the vehicle it's very important to take 6 photos:

1) Vehicle creation in Blender

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

• 1 photo from the left side and 1 photo from the right side

• 1 photo from the front side and 1 photo from the rear side

• 1 photo from the top side and 1 photo from the bottom side

After gathering all the necessary measurements, we can proceed by opening Blender

and starting a blank file.

This guide does not cover the basics of the Blender environment. Therefore, if you are

new to Blender, we recommend watching a tutorial before continuing.

Blender Tutorial

After understanding how Blender works and how to import a .dae file into your

environment, we can begin creating the vehicle.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

The first thing to do is to decide the setting of the axis, we suggest to use:

X-axis to the: Y-axis to the: Z-axis to the:

Place the center of the X-Y axis at the exact center of the vehicle. This will simplify some

operations later on (refnodes). For the Z-axis, do not set it at the center of the vehicle. Instead,

use only the positive part of the axis, considering the floor at level zero.

Also, we suggest to use negative numbers for the left part of the vehicle (X-axis) and for the rear

part of the vehicle, but you can choose also different setting.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

Before creating the vehicle's parts, we can import the photos taken

previously into the Blender environment to use them as reference

images for the project. It's important to do it to have a practice

reference of the vehicle.

To add a reference image to your blender project you can select

"add" then "image".

Then place the images you took precisely at the center of the axis,

ensuring they are properly aligned, and scale every photos to

set the right measurement.

You can use the measurement tool in Blender to check the

dimensions and confirm proper alignment.

1) Vehicle creation in Blender

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

You can also adjust them, so they are visible from only one

side, like viewing a cube. You can find detailed instructions

on how to set this up in the first part of this tutorial:

Reference Tutorial

After the photo placing you will see something like this for

every face of the vehicle.

After placing the photos, you will see something like this for

each face of the vehicle.

Be careful with the photos, especially those taken with

cameras, as they may cause scaling issues. We recommend

using them only as a visual reference and always verifying

measurements with the values you recorded earlier.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

Before starting the creation of the vehicle's parts, we need to establish an overview of the

components we need to model.

In the Scene menu at the top right of the screen, it is essential to organize the project into separate

collections, for example:

• Front Suspension folder

• Rear Suspension folder

• Wheels folder

• Chassis and Support folder

• Engine and Transmission Components folder

Keep in mind that the vehicle should be symmetrical along the Y-axis. Additionally, most

vehicles use the same suspension system for both the front and rear, meaning many parts can be

duplicated and mirrored in the correct direction to create the opposite side of the vehicle.

Inside the collection we can define all the pieces we need to create.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

Now we can start creating the vehicle's parts. You can also import .dae files from other

BeamNG vehicles into a separate Blender file.

These files can be found inside the content folder of the game.

The 3D models included in the game files are well-structured and highly detailed. We

recommend using them as inspiration or even directly borrowing certain parts from the .dae

files of the vanilla vehicles.

To add a part to your project, simply copy (Ctrl + C) and paste (Ctrl + V) the desired model

in Blender, and it will automatically be placed in your file, here you can scale that by pressing

the S key.

Unfortunately, for our project we couldn’t find a perfect reference within the vanilla files.

However, we did use some specific components, such as wheels and coilovers (springs and

damper groups). If you are working on a standard vehicle instead of a toy car like ours, you

will find plenty of examples and references not only within the game but also online.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

We recommend starting by importing the wheels. This will help you get a sense of the vehicle’s

overall size and determine the height of its base from the ground. Make sure that the wheels are

positioned as close as possible to the zero level to ensure proper alignment with the floor.

You can select a bottom point of the wheel

and ensure that its Z-axis position is as close

to zero as possible. This will help properly

align the vehicle with the ground.

Use the reference images to position the

wheels correctly and verify the distances

between them to ensure they are placed

accurately along the X and Y axes.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

Once the wheels are done, we can proceed to create the base of the vehicle. You can use the

reference images and the wheels as a guide for placement.

We recommend starting from the base with a simple plane. Align the plane to the desired Z level

and then deform it to shape the base structure of the vehicle by working with the plane's vertices.

To create a new vertex for your base you can use

subdivide after selecting 2 vertices:

Then, you can move the newly created

vertex anywhere you want and generate

new faces or connections by selecting the

vertices and pressing F.

Another useful tool is the E (Extrude)

function, which allows you to create new

vertices or surfaces in the desired

direction.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

To summarize, here are the essential tools for creating the base of the vehicle:

• Make Edge/Face (F key): Creates a surface or a connection between the selected vertices.

• Subdivide: Generates a new vertex between two already selected.

• Extrude (E key): Extrudes the selected surface or vertices. Hold the X,Y, or Z key to extrude in

a specific direction.

• Merge: You can merge some vertices or some mesh in a single part, that can be useful to

connect vertices from different parts, select the vertices and press the right button of the

mouse, to do it select the parts or the vertexes and press the mouse right button, then Merge.

After creating the base, carefully check the position of every vertex to ensure symmetry. These

tools are useful for modeling vehicle parts, especially rigid and polygonal components. For more

complex shapes, start with a simple structure like a cylinder, then use Duplicate (Shift+D), Scale

(S), and connect the vertexes of the mesh to the others vehicle's part to refine the design. You can

also import parts from vanilla vehicles or other files to streamline the process!

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

After creating the wheels and the base, we can proceed with the construction of:

• Suspension

To create the suspension, start by modeling the lower arms, followed by the upper parts of the

arms. Next, place the coilover into the suspension system and ensure that everything closely

resembles the real vehicle.

It’s not crucial to replicate the exact details of the real vehicle, but it is important to maintain the

correct scale. The components must be positioned and oriented properly to ensure realistic

movement within the game.

• Chassis

you can create it without worrying too much about the smoothness. We recommend using the

same tools described previously to build the structure.

Focus on maintaining symmetry and ensuring all parts are properly connected. You can use the F

key to join selected elements together.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

• Engine

As we will see later in the JBeam creation process, creating

a detailed engine mesh is not essential since the torque is

defined by a function. This means the mesh does not impact

the power system. You can even represent the engine using

simple cubes, as we did.

• Transmission

The same principle applies to the transmission, but we

recommend using a slightly more detailed mesh to make it

easier to determine the correct position and orientation of

the transmission nodes and beams. You can also use

meshes from vanilla vehicles to set up differentials, half-

shafts, and driveshafts.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

After creating the vehicle, it’s essential to align the

origins of all its parts with the world origin. To do this

efficiently, we'll use the 3D cursor.

Press Shift + S and select "Cursor to World Origin".

Select all vehicle parts by pressing A, then right-click

and choose "Set Origin" → "Origin to 3D Cursor".

This ensures that every part shares a common origin,

allowing BeamNG to correctly interpret the vehicle’s

position and orientation.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Vehicle creation in Blender

We also need to apply all transforms (scaling,

rotation, etc.) to the model.

This process resets the scaling and rotation values

without changing the shape or position of your

model.

To apply transformations:

• Select everything by pressing A

• Go to the Object menu

• Look for "Apply" and apply all transforms

This ensures that BeamNG interprets your model

correctly.

back

Davide Serpi – Stefano Cimmino PSD 2025

Full-body shot Top-down shot

Rear full-body shot Detailed shot

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Material and UV map assignment in Blender

After creating the vehicle, we're not done with Blender yet! We still need to:

• Assign materials to all vehicle parts

• Set up the UV map for proper texturing

The process for UV mapping and material assignment is the same as we previously explained

for track building. We simply need to use UV Intelligent Projection and assign a material to

each vehicle part.

What name should I give to the materials?

The material names in Blender must match exactly with the material names defined in the

main.material.json file!

But I don't have a material file! Where can I find it?

No worries—you can use your own file or download the provided main.material.json from the

shared drive or you can check for others material files online or in the vanilla vehicles.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Creation and use of the main.material file

You have two options:

• Modify the material names inside main.material to match the names assigned in Blender.

• Assign the exact same material names in Blender as defined in main.material.json

These materials allow you to customize your vehicle with realistic textures :

• FVee_MainColor – Main body color with clear coat and metallic properties.

• FVee_SecondaryColor – Secondary color with a clear coat and metallic finish.

• FVee_RollCage – Material for the roll cage with a generic color mask.

• FVee_BlackPlastic – Black plastic material with a slightly rough surface.

• FVee_BareMetal – Bare metal texture with a high metallic factor and some roughness.

• FVee_autobello – Autobello vehicle material with detailed textures

• FVee_autobello_engine – Engine material with high metallic properties and texture maps.

• FVee_autobello_interior – Interior material with color, normal, and reflectivity maps.

• FVee_autobello_interior_b – Additional interior material with metallic and roughness textures.

back

1) Creating the 3D Model (.dae file) – Blender Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Creation and use of the main.material file

Now we can finally export the vehicle and use the .dae file. Place the .dae file in a new folder along

with the main.material.json file.

The creation process is not entirely linear; at times, you may need to go back and redo certain steps.

We recommend organizing your work into collections, as explained earlier, and using references

during the initial stages of the vehicle's creation.

Now, we have finally completed the graphics part of the vehicle.

Wait, are you saying this is only for the graphics?

Well, yes. Having a good 3D model is essential for a realistic appearance, but most of the physics

are handled by the JBeam files.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Hierarchy of the JBeam structure

The JBeam files define the soft-body physics of the vehicle but do not represent its exact

configuration. Instead, they are divided into different components. However, the game

automatically compiles all JBeam files into a single structure, so you don’t need to worry

about managing multiple files. Any node or beam defined in one file will be recognized

across all files!

• Buggy.jbeam: main jbeam file and base definition.

• Buggy_Telaio.jbeam: defines the chassis.

• Buggy_Motore.jbeam: represents the engine.

• Buggy_Batteria.jbeam: represents the battery.

• Buggy_Ruote_A.jbeam: defines the front wheels.

• Buggy_Ruote_P.jbeam: defines the rear wheels.

• Buggy_Sospensione_A.jbeam: defines front suspension.

• Buggy_Sospensione_P.jbeam: defines rear suspension.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

1) Hierarchy of the JBeam structure

The first step in creating the JBeam structure is to define the hierarchy of the vehicle's

components. Below, you can see a map of our vehicle. These are not JBeam files themselves

but rather representations of the structures defined within those files and how they are

connected to each other.

Inside the files, you need to define this structure, and by using the "slot" function, you can

establish parent-child connections between components.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

For example:

{"Buggy":{

...

"slots": [

["type", "default", "description"]

["Buggy_Telaio","Buggy_Telaio","Buggy Telaio"],

["Buggy_Motore","Buggy_Motore","Buggy Motore"],

["Buggy_Batteria","Buggy_Batteria","Buggy Batteria"],

["Buggy_Sospensione_A","Buggy_Sospensione_A","Buggy Sospensione Anteriore"],

["Buggy_Sospensione_P","Buggy_Sospensione_P","Buggy Sospensione Posteriore"],

],

...

1) Hierarchy of the JBeam structure The JBeam structure we created is simple

and based on our vehicle, but you will need to

design the structure specifically for your

own vehicle. You can also take a look at other

mods or vanilla vehicles for reference.

There is no single correct answer, only

different types of structures, but make sure to

organize everything properly for the best

results. Also, you can follow the dae collections

used in Blender.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

After defining the hierarchy, we can start creating the nodes and beams structure. We

recommend starting from the base of the vehicle, but, as before, it's a good idea to take

inspiration and use as a base of work other mods or vanilla vehicles. Our vehicle was originally

based on the RG-R/C mod (a toy car mod), but we made several modifications:

• We reduced the number of beams and nodes used.

• We completely changed the suspension and chassis structure.

• The placement of the nodes and the beam usage was completely overhauled.

• We redesigned the entire powertrain.

• We created a new triangle structure and adjusted the vehicle’s dynamics.

For this reason, we don’t recommend starting from scratch. Instead, take an existing base and

adapt the structure to fit your vehicle. Once the vehicle works properly, you can start adding

features or tweaking beams and nodes to refine the handling.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

The mass of the nodes and the beam options are not easy to define at first. Instead, you will

refine these values through a tuning process, which consists of small adjustments and testing

different variations.

This is why it’s so important to start from a solid base. Creating everything from scratch is

possible, but it can take a significant amount of time. Some vanilla vehicles have been

developed and improved over several years (but some of them has problem like the not

perfect symmetry)!

With mods, the situation is different. Some mods are built from zero or from a very minimal

base, like the RG-R/C mod. However, if you examine its beam and node structure, you will

likely notice errors, such as missing beams, misplaced nodes, or unrealistic values (for

example, the toy car in this mod weighs over 240 kg, which is far from the real-life

counterpart).

Before choosing a base for your work, be aware of its limitations and decide on the level of

realism you want to achieve.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

If you're reproducing a normal car, this task will be easier due to the vast number of mods

and vanilla vehicles available for reference.

However, if you're recreating a toy car, you shouldn't waste time checking mods or vanilla

vehicles. We suggest using your own vehicle as a base (it’s also one of the lightest vehicles in

the world).

The most important aspect of the nodes and beams structure is symmetry. You must ensure

that the beam structure is the same on both sides, and that the nodes are placed

symmetrically.

If symmetry is not maintained, the vehicle will behave incorrectly in the game, causing it to

veer off course due to improper weight distribution and forces. This issue becomes more

noticeable as the vehicle's speed increases.

Now we can start explain how we setup the nodes and beam structure:

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy

In the main file, the base of the vehicle is defined. This is a

crucial component because it needs to be very rigid but not

excessively so to maintain stability.

Additionally, it is essential to ensure a symmetrical structure

to prevent unexpected behavior in-game.

As shown in the image, the masses are evenly distributed

across the entire base surface, providing stability and

realistic driving dynamics.

By using the Jbeam distribution property, some nodes of the

base are be moved in other structures to define engine,

differentials and other components with nodes and beams.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy

To create the base, you can follow the real vehicle's structure and

place the nodes in the exact positions of the Blender model's

vertices.

We suggest creating three rows of nodes:

• Central nodes, named like fr1, fr2, ...

• Left nodes, named like fr1l, fr2l, ...

• Right nodes, named like fr1r, fr2r, …

After creating the nodes, we can connect each adjacent node with

beams. Since there are no upper nodes yet to support the lower part

of the vehicle, the nodes will tend to collapse and be unstable when

tested in-game.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Telaio

In the upper part of the vehicle, we use two upper nodes

(fr4ur and fr4ul) to support the entire chassis structure

and the rear wing. Additionally, we use four nodes (fr4t,

fr3tl, and fr3tr) to connect the rear and front sections of

the vehicle.

These nodes are crucial, as their stability and ability to

absorb forces generated by the wheel movement directly

affect the overall stability and behavior of the vehicle.

The rear wing consists of four nodes forming a square. It

is connected to both the rear suspension and the upper

nodes (fr4ur and fr4ul).

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Sospensione_A

The suspension consists of several nodes:

• 6 nodes per wheel

• 1 node for the coilover

• 7 nodes for the arm structure

The most important beams are the two coilover

beams. They connect the coilover node to two

nodes on the wheel. These beams are crucial

because their values directly affect the vehicle's

dynamics.

All the wheels of the vehicle are done like that to

follow the symmetry rule. We used some

"variable" to modify in game some suspension

value.

The tires are

defined with

the function:

pressurewheel

coilover node

Coilover beams:

characterised by

stiffness, damping,

and ride heigh

Steering beam

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Sospensione_A

In the game, you can modify various suspension properties of the vehicle through the

"Vehicle Config" menu. Adjusting these settings allows you to change the vehicle's

dynamics and overall performance.

• Increasing stiffness improves vehicle stability and

handling but reduces its ability to navigate uneven terrain.

• Increasing damping makes the vehicle less stable but

allows for smoother suspension dynamics.

• Raising the ride height helps the vehicle traverse certain

terrains more easily but reduces overall performance.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Sospensione_A

In the Jbeam files the coilovers beams are described by the following lines of

coding:

• Spring & Damping Settings: use variables to adjust stiffness and bump

damping

• Structural Properties: the beams are indestructible and can be adjust the ride

height

• Connections: Defines the shock absorber beams between suspension (s1r, s1l)

and wheel nodes (fw5r, fw3r, etc.).

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Sospensione_A

By using the debug tool of the game, we can show to you the suspension's beam structure and

how the wheels nodes are defined:

We can see in red the coilover beams defined in the previous slide and in white the beams

structure to connect the wheels to vehicle's body.

There are also low force beams to

make the structure more stable

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

2) Definition of beams and nodes

• Buggy_Sospensione_A

Make sure that the nodes used for the wheels are very stable to withstand the forces acting on

them during different driving phases.

You can also use the rows of nodes to structure the suspension arms, modeling them as beams

with low damping but high strength and stiffness to accurately simulate the real vehicle’s

structure.

Additionally, ensure that the entire structure is symmetrical between the left and right sides of

the vehicle, while keeping the necessary beams free for the steering mechanism of the front

suspensions.

We decide to use the beam ["fr2sr", "fw5r"] for the right steering

part and the beam ["fr2sl", "fw5l"] for the left steering part.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Definition of flexbodies and refnodes

Now that we have completed the nodes and beams definition, we need to create the

connection between the nodes, beams, and the mesh from the .dae files.

To achieve this, we will use the "flexbodies" function, which allows us to link a mesh to a

group of nodes and beams. The smallest group that can define a mesh is a single beam, as

seen in the case of halfshafts.

There isn’t much to create from scratch here—what matters is following the base structure

and using a tuning process to determine the best node and beam groups to assign.

Additionally, we can rely on the hierarchy structure established earlier. For example, the

suspension arms are connected to the wheel hubs, meaning they must move together.

However, they also need to follow the vehicle's base, so some arm nodes must also be linked

to the base structure.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Definition of flexbodies and refnodes

With some work and by following the base structure and hierarchy

you've set up, you will be able to correctly configure the meshes.

Remember: if a mesh doesn’t spawn, it’s because you haven’t

assigned the mesh group to the correct nodes!

For example, the coilover AD is generated by the group "molla_AD",

but if you don’t assign this group to both the coilover node and the

wheel nodes connected by the coilover beam, it won’t spawn!

Also, remember that the game retains the axis origin from Blender

and its position relative to the origin but the beams and nodes

group associated define the behavior of the mesh.

It’s not essential for the node groups to perfectly match the mesh

structure—their purpose is simply to spawn the mesh and control

its behavior.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Definition of flexbodies and refnodes

• Refnodes

refnodes are essential for spawning the vehicle and ensuring proper control.

You need to define the refnodes in the main file (Buggy.jbeam) and use very stable

nodes to guarantee stable handling and driving behavior.

It’s best to assign refnodes using the base of the vehicle as a reference:

• Ref node: Ensure it is at the center of the vehicle and near the axis origin set in

Blender. Example: (0.0, 0.0, height of the base)

• Back node: Positioned behind the ref node.

• Left node: Positioned to the left of the ref node.

• Top node: Positioned above the ref node.

There are additional optional nodes, but they are not necessary for our vehicle.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

3) Definition of flexbodies and refnodes

• Triangles

After defining the nodes and beams, it is crucial to set up

triangles across the entire surface of the vehicle to ensure

proper collision behavior.

It is very important that the green side of the triangles has

its normal vector facing outward to ensure correct impact

reactions.

As shown in the image, you don’t need to perfectly match

the exact mesh definition—a simplified structure is

sufficient for proper physics simulation.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

4) Powertrain structure and vehicleController

Engine and

torsion

reactor for

the energy

and torque

production

The power is divided by

the central differential
Rear left tire

Driveshaft

Halfshaft
Open

differential

The powertrain system is what makes the

vehicle move—you need to define all the

components of your powertrain system.

The real vehicle is a 4x4 with a single

electric motor, three differentials, and

multiple shafts connecting everything

together.

We successfully replicated the entire

powertrain structure of the real vehicle,

as well as its performance.

You can create every powertrain possible,

from the camion with so many wheels or a

racing rear traction car.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

4) Powertrain structure and vehicleController

For the own vehicle we decide to use:

• Electric Motor

• Reactor Torque

• 3 Open Differentials with the gear-ratio modifiable

• Electric Battery with level energy modifiable

• 2 driveshaft

• 4 halfshaft destructible

• 4 wheels

To define the electric motor, you need to define the torque in every RPM range. Through a tuning

process, we succeeded in setting the right values for the vehicle. Increasing the gear ratio will

improve acceleration but reduce top speed.

The battery is also configured to have realistic durability and allows the user to develop

algorithms to optimize energy consumption for specific tasks.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

4) Powertrain structure and vehicleController

The electric motor is defined by the Jbeam section of the engine:

• Torque Curve: Specifies torque output at different RPMs. The

motor provides 30 Nm up to 9000 RPM, then gradually

decreases.

• Max RPM: The motor's redline is set at 13,000 RPM.

• Inertia & Friction: Defines how quickly the motor responds and

resists motion.

• Electrical Efficiency: Set to 95%, affecting power consumption.

• Regeneration: Disabled (maxRegenTorque: 0.0).

• Battery: The motor uses "mainBattery" as its power source.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

4) Powertrain structure and vehicleController

We can define the powertrain chain scheme shown earlier in the following way:

These are the reference nodes

used to apply torque reaction

forces. Choosing the right nodes

ensures realistic chassis flex

and behavior.

The powertrain section must be

located in every part that needs

to be linked with the chain

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

5) Definition of wheels and hydros

After defining the Nodes and Beams and the powertrain, we need to set up the wheels and

steering of the vehicle. Unlike other nodes and beams, the wheels are created using the

BeamNG function "pressureWheel".

We can divide the wheel characteristics into six modifiable sections:

• General settings

• Hub options

• Tire options

• Pressure options

• Brake options

• Definition and connection to the hub's nodes

There are many possible values to modify, so this is just one way to categorize them. You can

create your own classification and adjust more characteristics beyond the default values.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

5) Definition of wheels and hydros

In the first three sections, you must define the height and dimensions of the wheel hub, as well as

the characteristics of the tire rubber.

The spring stiffness of the hub's beams and the tire's beams can be adjusted through a tuning

process. We recommend starting with a low value and gradually increasing it step by step. This

approach helps to avoid instability during the testing phase.

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

5) Definition of wheels and hydros

Then, you must define the pressure values and brake

characteristics. Our vehicle’s braking system is almost entirely

disabled since it does not have a braking system on the wheels.

The wheel definition is the final part of the file, where you must

specify the node references for the wheel:

• AD: Wheel name

• ruota_AS: Group for flexbodies

• fw1rr: Most lateral node reference

• fw1r: Less lateral node reference

• fw4r: Turning node reference

• fw3r: Braking node reference

• -1/1: Wheel rotation direction

The wheel name must be used in the powertrain system with the

function "connectedWheel": "AS".

back

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

5) Definition of wheels and hydros

Now we need to define how the vehicle's cornering works. In our project, inside the

Suspension file, you will find the steering configuration.

This sets up the steering system for the buggy, with specific parameters that define the

responsiveness and limits of the steering mechanism, including steering wheel lock,

input/output speed, and sensitivity adjustments.

The "hydros" section defines the connections for the steering system using nodes. Each link

includes:

• "id1" and "id2": Node identifiers for the steering beams.

• "factor": Adjusts steering sensitivity, with negative values reversing the steering direction.

• "steeringWheelLock": Limits the steering wheel's rotation.

• "lockDegrees": Sets the maximum steering angle.

• "inRate" and "outRate": Control the speed of steering input and return to neutral.

back

Davide Serpi – Stefano Cimmino PSD 2025

Full-body shot Top-down shot

2) Creating the JBeam Scripts – JBeam Phase

Davide Serpi – Stefano Cimmino PSD 2025

Vehicle's Dynamic

2) Creating the JBeam Scripts – JBeam Phase

3) Defining the Package Structure – Configurations Phase

Davide Serpi – Stefano Cimmino PSD 2025

After defining the nodes and beams structure and completing the JBeam construction, we

need to create and configure additional files to provide BeamNG with essential information

about the vehicle package and configurations.

A mod is not merely a single vehicle but rather a package that defines the vehicle within it.

The package establishes the overall structure, including the number of components that make

up the vehicles it contains and the hierarchical relationships between these parts.

Within the package, multiple versions of a vehicle can be defined by modifying individual

components or adjusting specific variables.

This approach allows for vehicle configuration changes without the need for reverse

engineering the code, ensuring a more flexible and structured modification process.

In fact, you can see 2 two version of the vehicle inside selecting the package inside the

garage menu:

1) Packages and Vehicles
back

Davide Serpi – Stefano Cimmino PSD 2025

We can define multiple versions of the vehicle simply by creating additional files within the

mod folder.

3) Defining the Package Structure – Configurations Phase

1) Packages and Vehicles
back

Davide Serpi – Stefano Cimmino PSD 2025

2) Info.json, .pc and png files

In a BeamNG mod, the info.json, .pc, and .png files serve different purposes to properly integrate

the vehicle into the game. Here's what each file does:

info.json (Vehicle Information File)

This file contains metadata about the vehicle, such as:

• Vehicle name (displayed in the game menu)

• Author (who created the mod)

• Description (a brief overview of the vehicle)

• Available configurations and colors

It helps BeamNG organize and display the mod correctly in the vehicle selection menu. There is

one main info.json file for the package and different info.json files for each vehicle configuration.

In our mod, we also use main.material as the texture file to define the available colors and to set the

black and red colors of the real vehicle. To do this, you need to define the colors inside the

package info.json file, just like we did.

3) Defining the Package Structure – Configurations Phase
back

Davide Serpi – Stefano Cimmino PSD 2025

2) Info.json, .pc and png files

You can take these colors as a base for your work.

3) Defining the Package Structure – Configurations Phase
back

"colors":{
"White": "1 1 1 1.524",
"Charcoal": "0.191 0.191 0.191 1.536",

"Black": "0.106 0.108 0.109 1.645",
"Classic Green": "0.000 0.258 0.1451 1.552",
"Yellow": "0.949 0.625 0.0263 1.552",
"Orange": "0.83323 0.465697 0.0507703 1.524",
"Red": "1 0 0 1.8",

"Dark Blue": "0.034 0.233 0.561 1.404",
"Light Blue": "0.236 0.495 0.967 1.723",
"Bright Green": "0.0198987 0.766101 0.0298481 1.7"

}

Davide Serpi – Stefano Cimmino PSD 2025

2) Info.json, .pc and png files

.pc File (Vehicle Configuration File)

The .pc file defines a specific preset configuration of the vehicle, including:

• Parts selection (e.g., wheels, engine, suspension, body panels)

• Color settings (defaultpaintName1...)

• Tuning parameters (gear ratios, suspension stiffness, etc.)

Players can save and load different configurations of the same vehicle using this file.

.png File (Vehicle Thumbnail Image)

This is the preview image that appears in the vehicle selection menu.

• It should show the vehicle clearly.

• The file name usually matches the .pc file to ensure the correct image is displayed

for each preset.

3) Defining the Package Structure – Configurations Phase
back

Davide Serpi – Stefano Cimmino PSD 2025

Vehicle's Analisys
With some limits, we achieved replicating the real vehicle dynamics and structure, some

properties are:

To better understand the vehicle's properties, it is important to consider the key aspects of its

creation. Our goal was to achieve a balance between stability, the number of nodes and

beams, weight, and driving realism.

Objectives achieved

• 1:1 scale and good stability

• Independent suspensions

• Max speed: 80 km/h

• Braking pitch

• Electric engine and battery

• 4x4 traction and 3 differentials system

• Good cornering and entry speed near to

the real vehicle

To achieve

• Weight not close to that of the real

vehicle (120kg vs 20kg)

Davide Serpi – Stefano Cimmino PSD 2025

Considerations

• Stability

Ensures the vehicle behaves correctly during different driving

phases, such as cornering at various speeds, braking, and

accelerating. A lack of stability can make the vehicle undrivable or

even cause it to malfunction or break apart.

• Number of nodes and beams

A more complex vehicle will have a greater number of nodes and beams, making it more

realistic-similar to the cars already present in the game, provided they are used

correctly.

Our focus was on the suspension dynamics, particularly movements such as pitching

during braking and cornering at low speeds.

However, increasing the number of nodes and beams also raises debugging difficulty

and introduces a greater number of variables to manage.

Without compromising driving realism, we optimized the

design by removing 20 nodes from the initial version!

Davide Serpi – Stefano Cimmino PSD 2025

• Weight

The first version of the vehicle weighed over 240 kg, but in the second

version, we successfully reduced this significantly. Weight plays a

crucial role in stability:

• Increasing the weight of the nodes helps reduce vehicle

oscillations, making the car more stable.

• A well-balanced weight distribution also simplifies the modding

process and improves overall handling.

We successfully achieved a well-balanced weight distribution like can

be seen in the image on the left.

• Comparison to Other Vehicles:

There are no small vanilla vehicles in the game, and the only

comparable mod is a much heavier and larger vehicle. Our focus was to

create a vehicle with a practical and balanced size and weight that

performs well under various conditions.

Considerations

Davide Serpi – Stefano Cimmino PSD 2025

• Approach

Our approach to creating the vehicle was driven by careful consideration of stability,

node and beam structure, and weight. We made strategic adjustments to ensure the

vehicle felt realistic while also being stable, manageable, and optimized for

performance.

This approach allowed us to maintain realism in the driving experience without

compromising performance or the vehicle's ability to navigate different challenges.

• Sensor's integration

We also considered the integration of sensors in the vehicle's design, ensuring that their

placement and scale align with the real-world proportions. This allows for a more

accurate and realistic sensor setup, optimizing performance in various driving scenarios.

By maintaining the real vehicle scale, we ensure the sensors' behavior and data, such as

distance measurements, are realistic and effective for testing.

In summary

