

BeamNG.tech Technical Paper

Pascale Maul*, Marc Mueller*, Fabian Enkler*,

Eva Pigova*, Thomas Fischer*, Lefteris Stamatogiannakis *

Abstract— Simulation platforms are critical components for the
evaluation and development of driver’s training applica- tions
and intelligent algorithms for advanced driver-assistance
systems (ADAS). Driver’s training applications are supported by
an immersive simulation environment that can easily be adapted
by the distributor to match the desired user in- terface and
vehicle type. ADAS researchers and developers use
BeamNG.tech as a platform for model-in-the-loop testing and
development. BeamNG.tech stands out among the several
available driving platforms through its custom soft-body physics
engine, detailed modeling of the vehicle subsystems, and high
degree of adaptability. The soft-body physics approach allows
to faithfully simulate the kinematic properties of our vehicle
models and leads to a realistic replication of their driving
behavior. The modding system allows anyone to customize
various components of the simulation, be it the vehicle models,
assets, scenarios, or the user interaction. Together with our
diverse set of levels, these properties make BeamNG.tech the
ideal platform to develop ADAS as well as highly realistic
driver’s training applications.

I. INTRODUCTION

Simulations have gained increased interest in the auto-

motive industry and in the training of human drivers. This

document illustrates how BeamNG.tech contributes to these

two domains to push forward research in the autonomous

driving domain and supports driver’s training applications.

A. Simulations in Autonomous Driving

Simulations play a crucial role in the development of

autonomous driving systems since they have proven to be a

cost- and time-efficient tool. Moreover, ISO/PAS 21448 [1]

explicitly proposes a strategy to adopt the use of simulations

to minimize residual risk due to insufficient situational

awareness of autonomous driving applications. Continuous

verification & validation is a key paradigm to acquire suffi-

cient functional safety. An iterative cycle is the foundation

of the software development process proposed in ISO/PAS

21448, where the use cases of the respective autonomous

driving system (ADS) is repeatedly reviewed to obtain a

comprehensive specification of its operative design domain.

In this framework, model-in-the-loop (MIL) simulations are

a cost- and time-effective tool to implement verification &

validation procedures and help develop specifications that

lead to safe ADS deployment. But not only ADS develop-

ment relies on simulations: the performance of any learning-

based applications directly depends on the quantity and

* Pascale Maul, Marc Mueller, Fabian Enkler, Eva Pigova, Thomas
Fischer, Lefteris Stamatogiannakis BeamNG GmbH, Bremen, Germany
{pmaul, mmueller, fenkler, epigova, tfischer,
estama}@beamng.gmbh

Fig. 1. Schematic representation of the powertrain simulation of the ETK800
854t in BeamNG. The mathematical model of individual compo- nents can
be further subdivided but have been omitted in favor of simplicity. The
individual components of the powertrain are, from top to bottom and as
they are connected: engine, torque converter, gearbox, transfer case that is
connected to the front and rear differential.

quality of available data for training and evaluation. Thus,

access to large amounts of data is crucial for the successful

development of autonomous driving applications, especially

if they rely on deep learning.

B. Simulations for Driver’s Training Applications

The use of simulations in driver’s training is a powerful tool

to extend classical driving lessons to improve novice drivers’

risk awareness. With only a basic gaming PC as equipment,

students can safely explore driving situations that are hard to

replicate in the real world or situations that may not

necessarily appear during driving lessons. Scenario training

allows the students to proceduralise critical skills and to better

prepare for driving and traffic challenges. Moreover, this

training method allows for a self-guided learning process

where students have the opportunity to gain confidence in

their driving skills.

C. BeamNG.tech

We present BeamNG.tech as a powerful and versatile

simulation platform for the development of autonomous driv-

ing systems and driver’s training applications. Originating

in the entertainment industry, the founders had the vision

to develop an authentic and versatile driving simulation.

Creating a custom physics engine that is based on soft-body

physics principles, and consequently building an authentic

vehicle simulation with a faithful replication of true-to- life

driving experiences. Today, BeamNG.drive is a popular

simulator for realistic driving in the gaming sector where the

finely tuned physics model and highly developed graphics

create an immersive driving experience in a sandboxed

environment that proves to be highly beneficial for driver’s

training applications. BeamNG.tech expands the capabilities

of BeamNG.drive by supporting automated data genera- tion,

providing various sensor models that are commonly used in

the autonomous driving sector and allowing more

parametrization of the overall software. Together with our

support for industrial and academic projects, BeamNG.tech

proves to be a versatile tool for ADAS development, data

generation and a strong foundation for any driver’s training

application.

Fig. 2. Architecture of BeamNG.tech and dependencies of provided open-
source projects. BeamNG provides three software packages. With
BeamNG.tech providing the simulation, BeamNGpy is responsible for sensor
management, automated scenario creation and vehicle control, and allows the
user to manage the simulation state. BeamNGpy can be used to integrate
BeamNG.tech as a subsystem for X-in-the-loop development or other
applications. Furthermore, the BeamNG ROS Integration package is
available. It depends on the BeamNGpy library and is used to integrate
BeamNG.tech into the ROS environment.

II. USAGE

This section describes the individual software components

and features of BeamNG.tech that support industrial and

academic clients in the development of driver’s training and

ADAS applications and details the features supporting the

respective areas of applications.

A. Components/Infrastructure

BeamNG GmbH distributes two software packages for

academic and industrial use. One is BeamNG.tech, the

standalone feature-rich simulation environment. The other

one is BeamNGpy – a Python interface targeting ADAS

development. While BeamNG.tech targets driver’s training

applications and provides support for custom content gen-

eration, it also provides support for automated data collec-

tion that is facilitated by BeamNGpy1. Besides its assets,

BeamNG.tech consists mainly of C++ and Lua code to

manage the simulation environment, while the user interface

relies on the Chrome Embedded Framework. Except for the

C++ part, the code base is freely accessible to the user and can

be adjusted to match the respective product requirements.

B. BeamNG.tech for driver’s training

1) Vehicle Models: The vehicle models of BeamNG.tech

are composed of three interacting parts that define appear-

ance, kinematic properties, and the propulsion mechanism.

BeamNG.tech provides 28 vehicles and 7 trailer models from

13 different brands. While the appearance is defined through

a typical 3D model, it also has a structural counterpart

defining the physical properties of the vehicle. This physics

skeleton predominantly determines the vehicle’s interaction

1https://github.com/BeamNG/BeamNGpy

Fig. 3. Schematic representation of the powertrain simulation of the Gravil
T65 in BeamNG. The mathematical model of individual components can
be further subdivided but have been omitted in favor of simplicity. The
individual components of the powertrain are, from top to bottom and as
they are connected: engine, clutch, gearbox, first differential that distributes
the power between the two-wheel pairs and the consecutive differential that
distributes the power within the individual wheel pairs.

Fig. 4. Schematic representation of the Tograc qE’s powertrain simulation in
BeamNG. The mathematical model of individual components can be further
subdivided but have been omitted in favor of simplicity. This diagram shows
that it’s also possible to include two different power sources into the
powertrain simulation. The two powertrain trees each consist of an electric
motor that is connected to a differential, which is connected to the front/back
wheels.

with its environment. It is accompanied by a powertrain

simulation that converts steering commands into torque that

is applied to the physics skeleton. The individual components

of the powertrain do not have any physical properties, they

are part of a separate and very detailed simulation that keeps

track of its mechanical and electrical components state.

BeamNG.tech’s powertrain system can be assembled in a

plug and play manner and can thus be adapted to fit any

configuration from a combustion engine powered vehicle to

electric cars, to trucks with four-wheel drive. To demonstrate

the flexibility of this system we have included three example

powertrain configurations. See Figures 1, 3, and 4.

2) Scenarios: Scenarios are used to specify location,

environmental conditions, traffic participants and setting up

constraints to be fulfilled by the player. They can be used

to monitor driving behavior (e.g. by marking a scenario as

failed if the player does not respect the speed limit) or to

train specific skills (e.g. parking backwards). BeamNG.tech

contains 19 levels of whom three levels provide urban

environments. The Flowgraph editor is a visual programming

tool that supports scenario creation without the need to code.

Here a scenario is created by defining a visual graph whose

nodes define a certain behavior and whose links connect

the different nodes’ in and output. With its help, an initial

setup can easily be defined as well as different constraints and

events to guide the player’s behavior. For a Flowgraph

example the reader is referred to Figure 5.

C. BeamNG.tech for ADAS development

1) Sensor Models: These commonly used sensors in au-

tonomous driving are available:

• Camera

• Lidar

• IMU

• Ultrasonic

Fig. 5. This figure shows a Flowgraph example for creating a simple scenario,
where a vehicle is spawned on the Smallgrid level. There exist different types
of nodes, that can be categorized into those that perform a certain task and
those that define values. While the main purpose of the latter ones is to provide
inputs for other nodes, nodes that perform tasks execute commands and rely
on the concept of flow to do so. With the help of Flow the order of execution
in the network is defined. It is produced exclusively by ’on Update’ nodes
and is propagated by task performing nodes. In this example the ’String’ node
is used to define the level, the ’Vehicle Config Provider’ selects BeamNG’s
ETK800 854tx (M), and the ’Transform’ node specifies the vehicle’s
position and orientation. These values are used by the ’Load Level’ and
’Spawn Vehicle’ nodes as inputs to perform their respective tasks. The ’on
Update’ node forwards its flow through the white colored link to the ’Load
Level’ node which in turn propagates it to the ’Spawn Vehicle’ node, thus
defining the order of execution.

Fig. 6. Scene from BeamNG.tech’s West Coast USA level,
automatically generated with the help of BeamNGpy.

Fig. 7. Visualization of the corresponding Lidar data, captured
simultaneously with the image data shown in Figure 5.

• Electrics

• State

The camera sensor provides RGB and depth images, as well

as ground truths in form of pixel-wise class annotations,

instance annotations, and bounding boxes. These sensors can

be customized to fit the individual needs of the users. The

electrics sensor represents an easy way to access the vehicle

systems internal state. Many values are available, among

others: information about the clutch state, engine state, or just

whether the turn signal is active. In contrast the state sensor

acts similar to a GPS sensor: it contains information about the

vehicle’s position and orientation in the current map. Our

simulation furthermore allows to record information that is

otherwise difficult to acquire and quantify in the real world:

• g-force and

• damage data.

Vehicles in BeamNG.tech are represented through a struc-

tural graph where nodes have a mass and interact with each

other through the edges (beams) that act like springs with

varying degrees of stiffness and strength. This approach

allows us to measure the stress on individual beams, whether

they are broken or not, to measure forces at different points in

the vehicle, physical stress, and damage.

2) Data Acquisition: Data acquisition plays a central role

in the training of learning-based algorithms, especially in the

one of deep learning systems. Our scenario-based approach

allows to systematically collect data in each operational

design domain. Scenarios help defining a set of conditions,

such as traffic participants, the environment, and a range of

environmental conditions. All vehicles can be controlled

directly through the BeamNGpy library, or the simulation’s

AI. The library furthermore allows to define a set of custom

sensors for each vehicle, whose data can be retrieved on

demand. While BeamNGpy plays a substantial role in the

automation of BeamNG.tech, it also helps integrat- ing the

application into X-in-the-loop settings. Furthermore

BeamNG provides the BeamNG ROS Integration, an open-

source package that allows to integrate BeamNG.tech into the

ROS platform.

3) Content Creation: BeamNG.tech and BeamNGpy offer

each tool for content creation. A world editor is part of

the BeamNG.tech distribution that allows to manually design

new levels. BeamNGpy contains functions that support the

automatic creation of roads and placement of pre-defined

objects.

III. THEORETICAL BACKGROUND

A vehicle’s driving behavior is determined through a range

of factors. The most obvious one is the driving input defined

by steering, braking, acceleration, and state of the gear

system. But environmental factors, such as the road surface,

inclination, aerodynamic forces play an equally crucial role.

Since the choice of the kinematic model is the backbone

of BeamNG.tech, this section is dedicated to describing the

soft-body physics approach in contrast to the rigid-body

approach.

A. Rigid-Body Physics

This framework is an approach widely adapted in the

simulation of cyber physical systems. Rigid-body physics rely

on the fundamental assumption that applied forces do not

deform objects. One rigid body is characterized through its

center of gravity and a finite number of node- points. These

object’s physical state is described through their spatial

rotation and angular velocity. This model can be easily

extended to the popular multi-body approach. Here,

individual rigid bodies are assembled into a kinematic chain

where individual bodies are connected to each other through

mathematical models of joints. The decomposition of one

object, in this case vehicle model, into multiple components

helps to acquire a more faithful model of the driving

dynamics. For example, external force applied to a wheel

have a different impact onto the vehicle than the same force

applied to the vehicle body. This approach is the

fundamental principle that many simulations rely on.

B. Soft-Body Physics

In contrast, under a soft-body dynamics framework, all

individual objects are deformable. BeamNG.tech implements

this framework using the spring-mass model. Here, individ-

ual objects consist of a 3D graph or physics skeleton. This

allows to model the kinematic properties of vehicles in a

bottom-up approach, since the overall dynamics of an object

are dictated by the state of its individual components. In the

terminology used by BeamNG, springs are called beams and

mass points are called nodes. Nodes have a position in space

that is updated dependent on the net forces acting on them and

influences the state of the beams. BeamNG.tech beams are

similar to beams in mechanical engineering, which are

structural elements that withstand load primarily by resisting

compression or expansion: They have a length that changes

depending on the stress forces acting on them and damping

forces due to the compressive/expansive rate of change. The

change in length of a beam will from here on be called

deflection. Deflection can be elastic, i.e. the beam will be

restored to its original rest length in the absence of force,

or plastic, i.e. the deformation will change the rest length of

the beam, and it can break the beam. Broken beams no longer

influence the position of the nodes they are connecting.

Beams have deformation and break thresholds that are used to

mimic the properties of different materials. The deformation

threshold determines how much force can act on the beam

before it shows a plastic (i.e. non-reversible) deformation. In

turn the break threshold determines how much force can act

on the beam before it breaks. To mimic the properties of a

sponge-like material, one would set a low deformation

threshold and a high break threshold, since sponges are easy

to deform but difficult to break. To model a brittle material

like glass one would choose a deformation threshold that is

higher than the break threshold to avoid a deformation of

the beam before it breaks. BeamNG.tech is capable of

running the simulation in real-time and faster. The base real-

time simulation frequency of BeamNG physics core is 2Khz

and it is fixed for the entertainment version

BeamNG.drive. In BeamNG.tech, the simulation frequency

can be adjusted to be higher or lower, depending on the user’s

needs.

IV. USES IN INDUSTRY AND ACADEMIA

This section presents two publications that used

BeamNG.tech for their research projects. While one fo- cuses

on the evaluation of ADAS applications, the other one

explores the possibilities of damage evaluation with

BeamNG.tech.

A. BeamNG.tech for the Evaluation of Lane-Keeping Sys-

tems

With the increasing demand for ADAS fueled applications,

the testing and evaluation of their subsystems is crucial. Thus,

in 2019 Gambi et al., devised AsFault, a system for search-

based testing and procedural content generation [2]. The goal

of this project was to develop a system that evaluates the lane-

keeping capabilities of an AI by designing increasingly

challenging road networks. AsFault is initialized with a set of

random road networks. Each road in this network is defined

through road segments that are combined with each other to

form a road network. One challenge in the procedural

generation of roads is the definition of valid roads. Here, valid

roads are only those whose segments do not have a gap

between them and do not self-intersect. After successfully

generating a road network, it is instantiated as a scenario in

the simulation. The fitness of the road network as a test is then

assessed by letting the autonomous agent follow a predefined

path and periodically measuring the distance between the

vehicle position and the lane center. Making use of the

principles of genetic algorithms, the road network is then

incrementally mutated to include more and more challenging

cases. The evaluation of AsFault showed that BeamNG.tech

can generate effective test suites by exposing safety-critical

problems related to the lane-keeping problem.

B. BeamNG.tech for Damage Evaluation

The soft-body physics model of BeamNG.tech allows for a

detailed modeling of stress and deformation on vehicle parts.

Together with HDI2, BeamNG collaborated on a pilot project

to generate an image data set for damage evaluation. What is

otherwise difficult to measure, can be easily computed in a

simulation that keeps track of a score to measure the stress of

the individual vehicle parts. BeamNG provided the necessary

framework to generate that data. It is publicly available on

GitHub as the Impact Data Generation3 project and creates

image data by auto-generating five types of crashes: t-bone,

rear end, frontal impact, pole crash, and a no crash scenario.

HDI in turn proved that this synthetic data can indeed be

used to train a deep learning system to predict whether

individual vehicle parts are deformed or not [3]. To increase

variability of the data set, vehicle configuration (color and

asset selection) and simulation settings (weather, time of the

day) where randomized. For each crash, images from various

perspectives were collected with the ground truth

2www.hdi.de

images and damage data. The ground truth here contains a

semantic segmentation of the vehicle that annotates vehicle

parts such as the different bumpers and fenders, the hitch,

radiator, hood, roof and individual wheels. The damage data

comprises detailed information regarding the beams, among

others the maximum deformation observed, the percentage

of deformed and percentage of broken beams etc. With this

data the deep learning system was trained to classify vehicle

parts and to identify the amount of damage they received. The

challenges of this project were the difficulty for the CV

system to transfer the knowledge acquired to images showing

real crashes. More work is needed to close the domain gap

between real crash images and the ones generated through

BeamNG.tech. Another challenge is to convert the damage

data from the simulation into a meaningful quantity that can

be used in the real world. In summary, this project is a

successful and creative approach in automating damage

evaluation.

V. FUTURE DIRECTIONS

In the future our main focus lies in implementing more

features to support driving simulators and AD developers. To

do so we are also planning to interface with other frameworks

to facilitate scenario creation, the import of real-world maps,

traffic management and pedestrians. We will also extend our

support for co-simulation with other platforms and robotic

systems.

REFERENCES

[1] I. O. for Standardization. Road vehicles — safety of the intended
functionality.

[2] A. Gambi, M. Mueller, and G. Fraser. Automatically testing self-driving
cars with search-based procedural content generation. Pages: 328.

[3] P. Maul, P. Godejohann, M. Mueller, E. Pigova, L. Stamatogiannakis,
and T. Fischer. Applied sim-to-real transfer for damage estimation.

http://www.hdi.de/

